Escolha do lubrificante correto torna mais precisa a curva-limite de conformação

Durante a estampagem profunda de peças metálicas, a curva-limite de conformação (CLC) permite prever o nível máximo de deformações que um dado material pode atingir antes do seu rompimento. Este trabalho descreve o processo de obtenção da CLC para o aço inoxidável 304N e o alumínio 1100, observando a influência do atrito em seu resultado. Para isto, foram comparados os efeitos do lubrificante de óleo mineral e da almofada de poliuretano, que tem coeficiente de atrito próximo de zero.

L. F. Folle, R. P. Arruda, D. Marca, L. Schaeffer

O processo de embutimento profundo ou estampagem profunda é um dos mais utilizados para a fabricação de peças a partir de chapas. Para determinar se uma peça pode ser estampada sem falhas é utilizada a curva-limite de conformação (CLC), que indica a fronteira entre as deformações permissíveis e catastróficas a que o material estará sujeito durante a estampagem.

O comportamento das deformações de um componente estampado é comparado com a CLC do material em questão; qualquer combinação situada abaixo da curva significa deformações que o material pode suportar e, conseqüentemente, as localizadas acima serão referentes a deformações que o material não suportará.

Fatores como espessura, textura, atrito, entre outros, influenciam o posicionamento da CLC, podendo deslocar a curva mais para cima ou mais para baixo, isto é, aumentando ou diminuindo a estampabilidade do material.

Este trabalho tem como objetivo descrever o processo de obtenção da curva-limite de

conformação (CLC) pelo ensaio Nakazima modificado e observar a influência do atrito na curva. Para a obtenção da curva foram usados corpos-de-prova entalhados⁽¹⁾ e punção do tipo elipse rasa⁽²⁾, modificando o método convencional que utiliza corposde-prova em formato de tira e punção hemisférico⁽⁵⁾. Na análise da influência do atrito foi comparado o efeito lubrificante de um óleo mineral e o de uma almofada de poliuretano que descreve uma condição de atrito hidrodinâmico, onde praticamente não há contato entre o punção e o corpo-de-prova, para obtenção da CLC do aço inoxidável 304N e do alumínio 1100.

Luis Fernando Folle, Rodrigo Patricio de Arruda, Dhiones Marca e Lirio Schaeffer são do Laboratório de Transformação Mecânica da Universidade Federal do Rio Grande do Sul (UFRGS). Reprodução autorizada pelos autores.

Uma visão rápida do comportamento das tensões e deformações

Tensões

Durante o processo de estampagem há uma redistribuição do metal, quando ocorre a transformação da geratriz (bidimensional) na peça (tridimensional), submetendo o material a diferentes estados de tensões nas diferentes regiões da peça (figura 1).

Borda da peça

Na região da borda há tensões de compressão circunferencial

Fig. 1 – Desenho esquemático das regiões de uma peça estampada com os tipos de tensões atuantes

 $(\sigma_c < 0)$ e tensões de estiramento radial ($\sigma_r > 0$), sendo que as tensões compressivas são maiores, pois o punção força o metal das bordas na direção do centro. Com isso, há deformações trativas na direção do comprimento $(\phi_1 > 0)$ e compressivas na direção da largura ($\phi_2 < 0$). Pela lei da constância do volume, sabendo que $\phi_1 < \phi_2$, as deformações na direção da espessura são compressivas ($\phi_3 < 0$), isto é, há um aumento da espessura do material.

À medida que o punção avança, intensificam-se as forças compressivas, podendo ocorrer um aumento excessivo da espessura que irá, consegüentemente, enrugar no material. Para evitar o enrugamento usa-se o prensachapas, que aplica uma tensão compressiva na direção da espessura, impedindo o aumento em excesso da espessura, mas sem

dimeco@dimeco.com.br - www.dimeco.com.br - Tel.: (11) 4038-2520 - Fax: (11) 4038-2298

evitar o movimento do material para o interior da matriz. Assim, se a pressão for insuficiente ocorrerão rugas, e se for excessiva o material poderá se romper.

Dobramento superior da peca

O metal em contato com o raio da matriz sofre tensões compressivas no sentido da parte superior da espessura da chapa e trativas no sentido radial, havendo deformações de embutimento profundo.

Lateral da peca

Na região lateral da peça ocorre deformação plana e estiramento uniforme, onde atuam tensões trativas no sentido radial ($\sigma_z > 0$) e não há tensões no sentido circunferencial ($\sigma_c = 0$).

Fundo da peça

O fundo da peca sofre tensões trativas nos sentidos circunferencial ($\sigma_c > 0$) e radial ($\sigma_r > 0$), caracterizando uma zona de estiramento biaxial.

Deformações

Os estados de tensões descritos acima geram deformações características:

Fig. 2 – Desenho esquemático das deformações principais inseridas no diagrama-limite de conformação⁽⁷⁾

Embutimento profundo

Ocorre no metal em contato com os raios da matriz e do punção. Nestes locais há deformações trativas na direção do comprimento $(\phi_1 > 0)$ e compressivas na direção da largura ($\varphi_2 < 0$), ambas iguais em módulo. Assim, pela lei da constância do volume, a deformação na direção da espessura é nula ($\varphi_3 = 0$).

$$\varphi_1 = -\varphi_2 \qquad \qquad \varphi_3 = 0$$

Tração uniaxial

Caracterizada por deformações trativas na direção do comprimento e deformações compressivas nas direções da largura e da espessura, sendo essas últimas iguais entre si.

$$-\phi_3 = -\phi_2$$
 $\phi_1 = -2.\phi_2$

Deformação plana

Ocorre na parede da peça onde o metal não está em contato com a matriz nem com o punção. Não há deformação na direção da largura e na direção do comprimento há deformações trativas. Com isso, há deformações compressivas na direção da espessura.

 $\varphi_2 = 0$

 $\varphi_1 = -\varphi_2$

Tecnologia Qualidade Robustes FC MIRASSOL Referência em inovação Alta produtividade Máquinas para Corte e Slitters Perfiladeiras Alimentadores de Prensas Conformação de Aço · Cortes transversais Ferramentais Cilindricos em Bobinas

- Cortes voadores
- Endireitadores de chapa
- Formadora de Tubos
- Automações especiais
- Máquinas especiais

Estiramento biaxial

Ocorre no fundo da peça onde o material está em contato com o punção. As deformações na direção do comprimento e da largura são trativas e iguais; assim, a deformação na direção da espessura será compressiva e correspondente ao dobro da deformação do comprimento (ou da largura).

$$\varphi_1 = \varphi_2 \qquad \qquad \varphi_3 = -2.\varphi_1$$

Diagrama-limite de conformação

Trata-se do diagrama em que as deformações são distribuídas em um gráfico no qual o eixo das ordenadas corresponde às deformações principais φ_1 (no sentido do comprimento) e o eixo das abscissas corresponde a φ_2 (no sentido da largura).

Estado de tensões

Na figura 2 (pág. 66) tem-se um diagrama-limite de conformação esquemático que demonstra

Fig. 3 – Curva-limite de conformação esquemática [ISO12004:1997], onde (a) é o embutimento profundo ($\varphi_1 = -\varphi_2$), (b) é a tração uniaxial ($\varphi_1 = -2.\varphi_2$), (c) é a deformação plana ($\varphi_2 = 0$) e (d) é o estiramento biaxial ($\varphi_1 = \varphi_2$)

como uma geometria inicialmente quadrada é deformada quando submetida a diferentes solicitações.

Observa-se pela figura 2 que o diagrama está divido em dois quadrantes pelo eixo das ordenadas ($\phi_2 = 0$):

- 1º quadrante: onde as deformações principais φ₁ e φ₂ são trativas;
- 2º quadrante: onde a deformação principal φ₁ é trativa e φ₂ é compressiva.

Curva-limite de conformação (CLC)

A curva-limite de conformação descreve o caminho das deformações sofridas pelo material durante a estampagem, ou seja, é uma função que representa como a deformação principal ϕ_1 varia com a deformação ϕ_2 .

Na figura 3 tem-se o esboço de um diagrama-limite de conformação completo, com a CLC do material e as retas (a, b, c e d) que representam os principais esforços envolvidos na estampagem.

Divisão pela CLC

A CLC divide o diagrama-limite de conformação em duas zonas:

 Zona própria para conformação: região abaixo da curva;

• Zona imprópria para conformação: região acima da curva.

Fatores que influenciam a CLC

- Espessura: maiores espessuras geram maiores deformações, isto é, há um deslocamento da curva para cima;
- Atrito: quanto menor o coeficiente de atrito, maiores serão as deformações e, conseqüentemente, mais acima estarão as curvas;
- Direção de laminação: corpos-de-prova cortados na direção de laminação apresentam maiores deformações e, quando cortados de forma perpendicular à direção de laminação, têm menores deformações;

• Anisotropia: quando $r_{90} > r_0 > r_{45}$ o material tem sua capacidade de deformação aumentada no 2º quadrante

Fig. 4 – Croqui dos corpos-de-prova para determinar a CLC pelo método Nakazima

> e reduzida no 1º quadrante, isto é, sofre uma rotação no sentido horário;

 Pré-deformação: corpos-deprova que tenham sofrido prédeformações trativas tendem a gerar uma CLC posicionada mais abaixo e, quando submetidos a pré-deformações compressivas, tendem a elevar a curva-limite;

- Tamanho de grão: quanto menor o tamanho de grão, mais acima é posicionada a curva, isto é, quanto menor o tamanho de grão, maior a estampabilidade do material;
- Grau de encruamento: quanto maior o grau de encruamento, mais acima é posicionada a CLC;
- Velocidade do punção: quanto menor a velocidade, maior será capacidade de o material ser deformado, isto é, a CLC é posicionada mais para cima.

Tab. 1 – relação das dimensões do comprimento (I _o), do raio (r _o) e das larguras (w _o e w _u) ⁽³⁾					
СР	l _o (mm)	r _o (mm)	w _u (mm)	w _o (mm)	
1	200	100	10	40	
2	200	90	20	50	
3	200	80	30	60	
4	200	70	40	70	
5	200	60	50	80	
6	200	50	60	100	
7	200	40	80	120	
8	200	25	100	150	

Procedimentos experimentais

Corpos-de-prova

Para a realização do ensaio Nakazima foram utilizados corposde-prova com tiras entalhadas⁽¹⁾. A presença dos entalhes, além de forçar a estricção na região central do corpo-de-prova, também aumenta a deformação no sentido da largura⁽²⁾. Na figura 4 (pág. 68) e na tabela 1 são mostradas as dimensões dos corposde-prova.

O tipo de deformação do corpo-de-prova é alterado conforme a variação da largura útil (w_u), isto é, o corpo-de-prova com menor w_u sofre deformação de embutimento profundo e com o maior w_u ocorre deformação de estiramento biaxial⁽²⁾. Assim, na medida em que é aumentada a largura útil, a deformação passa por embutimento profundo, embutimento, tração, deformação plana, estiramento e até estiramento biaxial.

Marcação dos corpos-de-prova

Foi utilizado o processo eletroquímico para gravar uma malha de geometria circular de 2,5 mm de diâmetro nos corpos-deprova. Na figura 5 tem-se um esquema do processo de gravação dos corposde-prova.

Os passos para gravação eletroquímica são:

- Limpeza dos corpos-de-prova, para garantir a ausência de sujeira e/ou gordura na superfície, evitando o desprendimento da malha impressa durante o ensaio;
- Os corpos-de-prova são colocados sobre uma chapa metálica de sacrifício, onde é ligado o pólo negativo do gerador de energia. Sobre os corpos-de-prova é colocada uma tela semi-permeável de Stencil, com a geometria da malha a ser gravada;
- Sobre a tela é colocado um feltro embebido em solução com eletrólito;
- O gerador de energia é regulado.
- Passa-se um rolo de *inox* ligado ao outro pólo do gerador – sobre o feltro, fazendo circular uma corrente elétrica entre o rolo e a chapa e provocando o ataque químico

Fig. 5 – Esquema do processo de gravação dos corpos-de-prova⁽³⁾

Cilindros Pneumáticos

De 1 a 200 Toneladas

Vantagens:

- Projeto compacto;
- Alta Velocidade de ação;
- Versão KT conecta 1 a 10 cilindros;
- · Modelos 6 e 10 bar;
- Sem risco de vazamentos;
- Amortecedores de impacto para estampo;
- Fácil instalação;
- Baixo nível de ruido;
- Completa linha de produto e
- acessórios;
 - Garantia de 1 ano ou 1 milhão de ciclos.

Funcionamento do Cilindro

Bairro Glória - 89216-110 - Joinville/SC Fone: (47)3419-9000 / Fax: (47)3419-9001 lox@lox-hr.com - www.lox-br.com

TOX'

dos corpos-de-prova. Foi feita uma següência de seis passes (três de ida e três de volta) para a perfeita marcação;

• Em seguida aplica-se uma solução neutralizadora nos corpos-de-prova para cessar o ataque químico.

Punções

A posição onde ocorre a estricção é influenciada pela Fig. 6 - Dimensões (em mm) do punção elipse rasa⁽²⁾ forma do punção⁽⁴⁾. Neste trabalho foi usado um punção na forma de uma elipse rasa com 50 mm de diâmetro, conforme figura 6, embora o método convencional de Nakazima utilize um punção hemisférico com 100 mm de diâmetro⁽⁶⁾.

A troca da forma do punção aumenta a área abaixo da curva-limite de conformação, aumentando a estampabilidade do material⁽²⁾. O punção na forma de elipse rasa, por ter uma área de contato inicial maior que o punção hemisférico, provoca

um menor nível de tensões no início do processo, distribuindo as deformações de modo mais uniforme [Hennig, 1997].

A utilização do punção elíptico também cria uma região plana no corpo-de-prova após o ensaio, facilitando a medição das deformações, uma vez que o método para essa medição exige superfície plana⁽²⁾.

Lubrificante

O lubrificante é posto entre o punção e o corpo-de-prova a ser

Fig. 7 – Detalhe do quebra-rugas presente no prensa-chapas

ensaiado e sua função é minimizar o atrito entre ambos, evitando a ocorrência de danos mecânicos na superfície do punção. Foram utilizados dois lubrificantes: o primeiro ensaio foi realizado com um lubrificante mineral líqüido e o segundo com uma almofada de poliuretano com 5 mm de espessura e diâmetro aproximado de 50 mm.

O segundo lubrificante proporciona uma condição de atrito hidrodinâmico, ou seja, o coeficiente de atrito é praticamente

comercial@conforma.com.br www.conforma.com.br R. João Ranieri, 222 Bonsucesso - Guarulhos-SP

Fig. 8 – Máquina Dan-Presse para a realização do ensaio Nakazima

zero. Assim, pode ser observada a influência do atrito na curvalimite de conformação quando é utilizado o primeiro lubrificante.

Quebra-rugas

O quebra-rugas está presente no prensa-chapas, conforme figura 7 (pág. 70). Ele tem a função de prender o material, impedindo que este flua para dentro da matriz. Com isto, garante-se que as deformações ocorram somente na região do corpo-de-prova em contato com o punção.

Máquina

O ensaio Nakazima foi realizado em uma prensa hidráulica de duplo efeito da marca Dan-Presse (figura 8), com capacidade de até 20 toneladas (6 toneladas no punção inferior).

Processo

O corpo-de-prova, com a malha gravada, é posto no centro da matriz inferior. Em seguida, ele é fixado na matriz pelo prensa-chapas com força controlada, pois se essa for insuficiente o material escoa para dentro da matriz⁽⁶⁾.

Fig. 9 – Abertura usada para visualizar a deformação dos corpos-de-prova

O punção é então forçado contra o corpo-de-prova, provocando o estiramento. O ensaio é realizado a velocidade baixa e constante, e é interrompido quando se atinge a estricção localizada do corpo-de-prova. Por esta razão o ferramental deve permitir a visualização do ensaio, como pode ser visto na figura 9.

Medição das deformações

Inicialmente a malha era composta por círculos com diâmetro

inicial (d₀) de 2,5 mm. Após o ensaio, a malha que se deformou com o corpo-de-prova assume uma geometria de elipse, na qual o eixo com maior deformação (d₁) corresponde à variação do comprimento e o eixo com menor deformação (d₂) corresponde à variação da largura. As deformações do comprimento (φ_1) e da largura (φ_w) são calculadas por:

$$\varphi_{l} = ln \frac{d_{1}}{d_{0}}$$
 $\varphi_{w} = ln \frac{d_{2}}{d_{0}}$

A deformação da espessura $(\phi_{\rm b})$ é calculada por meio da Lei da Constância do Volume, ou seja:

Para medir a variação da geometria foi utilizada uma réqua flexível, transparente e graduada com as deformações para a grade circular de 2,5 mm de diâmetro (figura 10), isto é, ela permite ler diretamente a deformação convencional e a verdadeira. A régua, por ser flexível, acompanha o formato do corpo-de-prova e sua transparência possibilita a visualização das linhas da malha.

Foram medidas duas elipses, uma de cada lado da estricção. A elipse medida deve ser a mais próxima da

Grade de 2,5 mm					
Alono. Grau de def. m					
% In					
190	-	1,06			
180		1,03			
170	-	0,99			
160		0,96			
150		0,92			
140		0,88			
130		0,83			
120		0,79			
110		0,74			
100		0,69			
90		0,64			
80		0,54			
70		0,53			
60		0,47			
50		0,41			
40		0,34			
30		0,26			
20		0,18			
10		0,10			
0		0,00			
-10		-0,11			
-20		-0,22			
-30		-0,36			
-40	1	-0,51			
-50	1	-0,69			
-60		-0,92			
-70		-1,20			
-80		-1,61			
-90		-2,30			
-100		1.000			

Fig. 10 – Grade usada para medir as deformações

estricção que esteja completa, ou seja, que manteve sua linha de contorno contínua. A régua é posta sobre a elipse a ser medida, e a leitura é feita quando uma das linhas transversais da graduação está sobre o eixo que está sendo medido e as linhas longitudinais de graduação estão sobrepostas às linhas de contorno da elipse medida.

Plotagem das deformações Os pontos medidos são plotados no gráfico-

<text>

73

Fig. 11 – Distribuição das deformações medidas nos corpos-de-prova de aço inox 304N, ensaiados com lubrificante de poliuretano

limite de deformação, onde φ_1 (deformação do comprimento) corresponde ao eixo das ordenadas e φ_2 (deformação da largura) corresponde ao eixo das abscissas. A curva CLC passa por baixo da nuvem de pontos plotados. A equação que descreve a curva é um polinômio, de terceiro ou quarto grau, que aproxima a distribuição dos pontos localizados abaixo da nuvem de deformações.

Influência do atrito na CLC

Lubrificação com almofada de poliuretano

Depois de realizadas as medições das deformações, estas são plotadas no diagrama-limite de conformação. Os pontos obtidos nos ensaios com o aço *inox* 304N, utilizando-se o poliuretano como lubrificante, podem ser vistos na figura 11.

Para descrever a curva CLC foram utilizados os pontos abaixo da nuvem de deformações, conforme detalhes na figura 11. Então, fez-se uma aproximação destes pontos por um polinômio de quarto grau. No gráfico da figura 12 observa-se o diagrama de deformações com a CLC obtida e as retas que descrevem os esforços envolvidos no processo de estampagem.

Para os corpos-de-prova de alumínio realizou-se o mesmo procedimento de medição e plotagem das deformações e a CLC obtida para este material, utilizando o poliure-

Fig. 12 – Curva-limite de conformação obtida para o aço inox 304N, com lubrificante de poliuretano

Fig. 13 – Curva-limite de conformação obtida para o alumínio 1100, com lubrificante de poliuretano

tano como lubrificante, pode ser vista na figura 13.

Lubrificação com óleo mineral

Para a determinação da CLC utilizando óleo mineral como lubrificante, foram seguidos os mesmos passos do item anterior. Na figura 14 pode ser vista a CLC obtida para o aço inoxidável 304N e, na figura 15 (pág. 75), a CLC para o alumínio 1100.

Comparação das curvas

Na figura 16 (pág. 75) são mostradas as curvas obtidas com o uso do

Fig. 14 – Curva-limite de conformação obtida para o aço inox 304N, com lubrificante mineral

lubrificante mineral e do poliuretano para o aço inoxidável 304N e, na figura 17 (pág. 75), as do alumínio 1100. Como era esperado, a curva do material com o lubrificante de óleo mineral encontra-se mais abaixo da curva do lubrificante poliuretano, pois o último proporciona um

Fig. 15 – Curva-limite de conformação obtida para o alumínio 1100, com lubrificante mineral

Fig. 16 – Diagrama comparativo das curvas obtidas utilizando o lubrificante de óleo mineral e o de poliuretano para o aço

Fig. 17 – Diagrama comparativo das curvas obtidas utilizando o lubrificante de óleo mineral e o de poliuretano para o alumínio

menor coeficiente de atrito entre a chapa e o punção. Esse abaixamento da CLC se deve ao fato de que, quando um lubrificante líqüido que está entre duas superfícies rígidas é submetido a uma certa pressão, há um limite no qual esse consegue atuar. Após isso, o filme de óleo se rompe e as superfícies se aderem como se não houvesse esse filme. A conseqüência disso é que haverá uma distribuição irregular das deformações, impedindo que o material seja mais exigido. A figura 18 (pág. 76) mostra este fenômeno, no qual é possível observar que para o lubrificante de poliuretano (figura superior) houve o rompimento dos corposde-prova no centro, o que já era esperado. Porém, para o lubrificante de óleo mineral, o rompimento

Maior flexibilidade e inovação em máquinas laser no mundo

MAN Ferrostaal Equipamentos e Soluções Ltda. Av. das Nações Unidas, 22351 - 04795-100 São Paulo - SP - Tel. (11) 5522-5999 www.primaindustrie.com - E-mail: info.br.mo@manferrostaal.com

MÁQUINAS DE CORTE A LASER

Fone: (16) 3311-4100 www.hidralmac.com.br hidralmac@hidralmac.com.br

Estampagem

foi descentralizado, pois a parte central estava em contato com o punção e, portanto, aderida a ele.

Conclusões

Algumas conclusões podem ser tiradas, de acordo com o que foi mencionado no texto:

- A curva-limite de conformação prevê o limite de deformações que um dado material pode atingir até o seu rompimento.
- Essas deformações podem ser usadas no projeto de peças estampadas, tornando possível saber quais os limites que o material irá oferecer antes da confecção da peça.
- Se a CLC for obtida usando um lubrificante inadequado, o material irá sofrer poucas deformações, tendo sua capacidade limitada e gerando uma curva que não representa a sua real capacidade.
- O lubrificante de poliuretano proporciona a obtenção da real capacidade que o material irá atingir e, a partir daí, é possível projetar peças em que os limites de segurança são mais aproveitados.

Agradecimentos

Os autores agradecem ao CNPq (Conselho Nacional de Desenvolvimento Científico e Tecnológico) e à Capes (Coordenação de Aperfeiçoamento de Pessoal de Nível Superior) pelo financiamento da pesquisa, ao aluno Mateus K. Marchioro e ao engenheiro Alexsandro

Fig. 18 – Conjunto de corpos-de-prova do ensaio Nakazima modificado, no qual foi usado um lubrificante de poliuretano (figura de cima) e um lubrificante de óleo mineral (figura de baixo)

S. Moraes pela ajuda nos ensaios para obtenção das curvas.

Referências

- KLEIN, L.N.T.; CERVELIN, F. Conformação de Chapas Finas. In: 37º Congresso Anual da ABM, Rio de Janeiro (RJ), 1982. Anais do 37º Congresso Anual da ABM. Rio de Janeiro, RJ. 1982.
- 2) SILVEIRA, S.E. Desenvolvimento do Processo de Construção e Curvas Limite de Conformação, 2004. 90 p. Dissertação de mestrado – Escola de Engenharia, Programa de Pósgraduação em Engenharia de Minas, Metalúrgica e Materiais (PPGEM) da Universidade Federal do Rio Grande do Sul. Porto Alegre.
- LAUCHMANN, L. Beurteilung von Versagensfällen bein Ziehen von Feinblechen durch visiolastiche. Formänderungs- und Spannungsanlyse EFB-Arbeitskreissitzung. Hannover, Alemanha, 1996.
- JOHNSON, W. Plasticity for Mechanical Engineers. London: Van Nostrand Reinhold, 1971. 412 p.
- NAKAZIMA, K.; KIKUMA, T.; HASUKA, K. Study of the formability of steel sheets, *Yawata Technical Report*, v. 264, p. 111-124, 1968.
- SCHAEFFER, L. Conformação de Chapas Metálicas. Porto Alegre: Imprensa Livre, 2004. 200p.
- 7) BRESSAN, J. D. Conformação de chapas anisotrópicas e superplásticas. In: I Conferência Nacional de Conformação de Chapas, 1993, Porto Alegre, RS. Anais da I Conferência Nacional de Conformação de Chapas. v. 1. Porto Alegre: Editor Lírio Schaeffer, 1998. p.151-160.