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Abstract

This study investigates the application of machine learning techniques to predict the deformation behavior of the AA 5052-
H32 aluminum alloy over a wide range of processing conditions. Tensile tests were conducted at different temperatures
(100-450 °C) and strain rates (0.01 and 1 s™!), enabling the acquisition of the material’s flow curves. The experimental data
were fitted to the Hensel-Spittel constitutive equation and subsequently employed in the development of Artificial Neural
Network (ANN) and eXtreme Gradient Boosting (XGBoost) models. The Al-based models exhibited superior predictive
performance compared to the phenomenological approach. The optimized ANN, with a dense architecture consisting of two
hidden layers with 256 and 128 neurons, achieved a mean absolute error (MAE) of 3.61 MPa and a mean squared error (MSE)
of 19.09 MPa?. The XGBoost model, configured with 100 decision trees and a maximum depth of 4, delivered even more
accurate results, with MAE of 0.74 MPa, MSE of 2.46 MPa?, and a coefficient of determination (Rz) of 0.9988, showing an
almost perfect overlap between predicted and experimental curves. These findings confirm the high accuracy and robustness
of machine learning techniques, highlighting their potential as a superior alternative to traditional phenomenological models
for predicting flow behavior in forming processes.

Keywords Hot forming - Aluminum alloys - Artificial intelligence

1 Introduction Steel alloys still dominate the automotive sector due to

their excellent cost—performance balance. However, alu-

Advances in the mobility industry have focused on innova-
tive and economically viable solutions aimed at increasing
vehicle energy efficiency. At the same time, requirements
related to crash performance have become increasingly strin-
gent. As a result, vehicles are now safer than ever, which has
driven the use of lightweight and high-strength materials,
carefully selected to meet these demands [1-4].
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minum alloys have emerged as a promising alternative to
conventional materials, playing a key role in reducing vehi-
cle component weight [5]. These alloys are characterized by
high mechanical strength, good energy absorption capacity,
high recyclability, and low density, in addition to exhibiting
good corrosion resistance [6]. Compared to steel, aluminum
alloys enable weight reduction of up to 50% [7].

Over the past decade, the application of aluminum
alloys in the automotive industry has increased by more
than 80%, a trend expected to intensify as new design con-
cepts advance. In 1996, the average amount of aluminum
employed per vehicle was approximately 110 kg; currently,
it is estimated that this figure may reach between 250 and
340 kg in the coming years [8]. A notable example is the
Audi A8 (2018), whose body structure contains 58% alu-
minum [9]. Historically, most aluminum products intended
for the automotive sector were obtained by casting; how-
ever, in recent decades, the stamping of aluminum sheets has
gained prominence, especially in the manufacture of external
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panels such as hoods and heat shields, as well as structural
components such as bumper beams [10].

Alloys from the 5xxx and 6xxx series have been widely
used in automotive body structures [11-15]. In parallel, the
use of high-strength alloys from the 7xxx and 2xxx series—
traditionally applied in the aerospace sector—is also under
development [16]. Series 5xxx alloys are non-heat-treatable,
with strengthening occurring mainly through work harden-
ing. In contrast, 2xxx, 6xxx, and 7xxx series alloys are heat-
treatable, allowing strength improvement through aging and
precipitation. Regardless of the class, one of the main chal-
lenges in forming these materials lies in achieving adequate
formability while simultaneously ensuring quality require-
ments and final part properties [17-19].

To mitigate limitations associated with formability and
springback, aluminum alloys traditionally formed at room
temperature have been increasingly applied in warm [20-23]
and hot stamping processes [24—29]. In these methods, the
sheet is heated and subsequently transferred to the press,
where it is formed between dies that may be cold, hot, or
locally heated [24]. After forming, the part remains in the
dies, which reduces the risk of thermal distortions. These
approaches allow the production of components with com-
plex geometries and high strength in a single processing step
[30].

To achieve such results, processes are carefully analyzed
through numerical simulations. In these analyses, the mate-
rial behavior under plastic deformation constitutes essential
information, as the accuracy of numerical models directly
depends on the fidelity with which material flow is repre-
sented. In hot forming in particular, it is necessary to prop-
erly define the relationship between flow stress and thermo-
mechanical parameters of the process. This representation is
generally carried out using constitutive equations.

Among the various phenomenological constitutive mod-
els, a traditional approach relies on the Zener—Hollomon
parameter (Z), which represents the strain rate compensated
by temperature. The Arrhenius-type constitutive equation
establishes the correlation between this parameter and the
flow stress through different mathematical relations: power
law, for relatively low stresses; exponential law, for high
stresses; and hyperbolic sine law, covering a wide range of
deformation conditions [31].

Other constitutive formulations explicitly incorporate the
dependence of flow stress on strain. In this group, the strain-
dependent Garofalo equations [32-35] and the Hensel-Spit-
tel model [36, 37] are noteworthy. The Garofalo equations
represent an evolution of the Arrhenius formulation by
including strain as a variable in the constitutive parameters.
The Hensel-Spittel model relates flow stress to strain, strain
rate, and temperature. It stands out for its concise formula-
tion, ease of calibration compared with other models, and
widespread use in commercial finite element software.
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Mehtedi et al. [31] investigated the hot deformation
behavior of aluminum alloys AA6060 and AA6063 through
torsion tests conducted between 400 and 550 °C. The alloys’
behavior was modeled using power and hyperbolic laws
associated with the Zener—Hollomon parameter, as well
as the Hensel-Spittel model. The modeling based on the
Zener—-Hollomon parameter showed the best performance,
with a correlation coefficient of 0.99. The Hensel-Spittel
equation achieved average R? values of 0.96 for AA6060
and 0.88 for AA6063.

New approaches have been developed, particularly by
modifying classical models. Liu et al. [29] analyzed the
flow behavior of AA6061 at temperatures between 350
and 500 °C and strain rates ranging from 0.01 to 1 s™!. For
this purpose, modified Arrhenius and Cowper—Symonds
equations were applied. The Cowper—Symonds model
incorporates the effects of work hardening and strain-rate
sensitivity during hot metal forming [38, 39]. Both models
demonstrated high accuracy, with average absolute relative
errors of 2.90% (modified Arrhenius) and 1.37% (modified
Cowper—Symonds).

The hot deformation behavior of AA7046 was analyzed
by He et al. [40] using an improved Hensel-Spittel-Garo-
falo model. This model combines the mathematical structure
of Garofalo with strain-dependent parameters, in a manner
analogous to the Hensel-Spittel model. The results indicated
satisfactory performance, with a coefficient of determination
R%2=0.989.

Despite their accuracy, phenomenological models pre-
sent certain limitations. Their parameters do not have direct
physical meaning, being merely fitting coefficients obtained
through regression of experimental data. Consequently, the
model is reliable only within the temperature, strain, and
strain-rate ranges in which it was calibrated. Outside these
ranges, the model may generate unrealistic predictions. This
is particularly critical in finite element analyses, as the soft-
ware may be forced to operate under process conditions not
represented in laboratory tests.

As an alternative, the possibility of modeling plas-
tic deformation behavior through artificial intelligence
(AI) models has become highly attractive [41-43]. These
approaches can capture complex and nonlinear relation-
ships between input and output variables without the need
to assume a predefined functional form. Furthermore, they
provide greater flexibility in handling large volumes of
experimental data and may achieve higher predictive accu-
racy, even under extrapolation conditions.

Another relevant aspect is that AI models are capable
of simultaneously incorporating multiple process variables,
which enhances generalization capacity and reduces the
limitations observed in purely empirical models.

In this work, artificial intelligence-based approaches were
developed to model the plastic behavior of the aluminum
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Fig. 1 Schematic representation of the methodological steps adopted in this study

alloy AA 5052-H32, with 1 mm thickness, under warm and
hot forming conditions. Flow curves were experimentally
obtained at different temperatures and strain rates, serving
as the basis for model calibration. eXtreme Gradient Boost-
ing (XGBoost) and Artificial Neural Networks (ANN) algo-
rithms were applied and compared with the classical Hen-
sel-Spittel constitutive model. The objective is to evaluate
the potential of machine learning techniques for predicting
deformation behavior over a wide range of processing condi-
tions, providing more accurate predictions than traditional
phenomenological models.

2 Materials and methods

Figure 1 schematically illustrates the steps developed in this
work. Initially, the flow curves of the material under different
temperature and strain rate conditions were obtained from
tensile tests. These results served as the basis for modeling
the plastic behavior of the AA 5052-H32 aluminum alloy,
employing both the Hensel-Spittel constitutive equation and
artificial intelligence-based models. Finally, the performance
of the different models was comparatively evaluated. Each
of these steps is described in detail in the following sections.

2.1 Tensile tests

Table 1 presents the chemical composition of the AA 5052-
H32 aluminum alloy with a thickness of 1 mm used in
this study. The composition falls within the nominal range
reported in the literature [44].

Table 1 Chemical composition of the 1 mm thick AA 5052-H32 alu-
minum alloy

Al Mg Si Fe Cr Outros
96,9 2,20 0,18 0,31 0,15 0,26
_ 1500 _

S é
o] 2
< ¢ 1 b
E (- /O
25,00
100.00

Fig.2 Detailed geometry of the tensile test specimens

The material was subjected to tensile tests using a Glee-
ble® 540 thermomechanical simulator. The geometry of the
tensile specimen is shown in Fig. 2.

During the tests, the samples were heated to the target
temperature at a controlled rate, held at the specified tem-
perature for 30 s to ensure thermal homogenization, and sub-
sequently deformed until fracture. The thermomechanical
conditions employed in the hot tensile tests are summarized
in Table 2.
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Table 2 Thermomechanical parameters of the tensile tests

Condition Temperature, T [°C]  Strain rate, ¢ [1/s]
1 100 0.01

2 100 1

3 200 0,01

4 200 1

5 300 0.01

6 300 1

7 450 0.01

8 450 1

2.2 Hensel-Spittel model

A widely employed approach for modeling and predicting
flow stress during hot deformation was proposed by Hensel
and Spittel [45-47]:

my

k= C.emT. @™ g™ ee (14 )T ..o T.T™ (1)

where C, m, to my are material constants that must be deter-
mined experimentally.

This constitutive model can be regarded as an extension
of the classical power-law model, incorporating features
of the Hollomon and Swift equations, with the constants
expressed as functions of strain and temperature [48].
The Hensel-Spittel model effectively captures the com-
bined effects of strain, strain rate, and temperature on flow
stress, and has been shown to reproduce the hot deforma-
tion behavior of metallic alloys with high accuracy [49].
Moreover, it is implemented in most commercial finite
element (FE) software packages, making the determination
of its parameters particularly valuable for providing input
data to FE simulations.

In this study, the methodology adopted for fitting the
constitutive model was based on linearization of Eq. (1) by
applying the natural logarithm, which allowed the sequen-
tial determination of the model parameters. By considering
certain variables constant, different reduced forms of the
equation were derived to isolate the coefficients associated
with strain rate, temperature, and strain. Linear regressions
were then carried out between the experimental data and
the transformed variables, enabling the extraction of the
parameters from the average slopes and intercepts obtained
under different conditions.

2.3 Modeling using artificial intelligence
Artificial Intelligence (Al)-based models began to be

applied to metal forming processes in the 1990s. Their
introduction aimed to overcome inherent limitations of
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traditional approaches, such as the difficulty in accurately
representing complex material behavior and the challenge
of optimizing processes involving multiple parameters in
real time. Since then, AI models have proven highly effec-
tive in addressing the complexity of forming processes,
providing flexible strategies for modeling nonlinear rela-
tionships and predicting mechanical behavior and fail-
ure. The expansion of Al applications has been driven by
advances in computational power and the increasing avail-
ability of experimental and simulation data. Consequently,
Al has become a powerful tool for improving efficiency,
accuracy, and process control in the field of metal form-
ing [50].

Owing to these characteristics, various Al-based
approaches have been employed for predicting metal flow
curves [51-56]. Unlike phenomenological constitutive mod-
els, such as Hensel-Spittel, Al models do not require a priori
definition of explicit mathematical relationships between
input and output variables, which confers greater flexibility
and ease of implementation. However, this also means that
the underlying physical relationships are not directly embed-
ded in the model [49].

In this study, two Al-based approaches were investigated:
Artificial Neural Networks (ANN) and eXtreme Gradient
Boosting (XGBoost). Both models were trained using exper-
imental data obtained from tensile tests on the AA 5052
alloy, where strain, strain rate, and temperature were varied
to predict flow stress under different forming conditions.

The methodology began with data preprocessing. The
input variables — strain (@), strain rate (¢), and temperature
(T) — and the output variable — flow stress (k;) — were
organized into a structured dataset. For the ANN model, the
Min-Max normalization technique was applied to scale the
data between 0 and 1, ensuring balanced variable distribu-
tions and improving training stability and convergence.

In the ANN approach, the dataset was divided into train-
ing and test subsets, with 20% reserved for final validation.
The network architecture was defined through automated
hyperparameter optimization, systematically exploring com-
binations of hidden layers and activation functions based
on predictive performance. The final network was trained
using the Adam optimizer with mean squared error (MSE) as
the loss function. To mitigate overfitting, an early stopping
criterion was applied, interrupting training when validation
loss did not improve for 30 consecutive epochs.

Throughout training, the model’s performance was con-
tinuously monitored using metrics such as mean absolute
error (MAE) and MSE on both training and validation sets.
Learning curves were analyzed to confirm training stability
and generalization capability. Once trained, the ANN model
was applied to the entire dataset to generate predicted flow
curves, which were subsequently compared to the experi-
mental results.
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The methodology applied to the XGBoost model fol-
lowed similar principles. However, this algorithm does not
require input normalization and is particularly effective for
tabular datasets. Model tuning was performed through cross-
validation combined with optimization of key hyperparam-
eters, including tree depth, learning rate, and the number of
estimators. After fine-tuning, the XGBoost predictions were
compared with the experimental data, enabling a critical
assessment of its predictive accuracy relative to the ANN.

3 Results

This section presents the results obtained in this study, start-
ing with the experimental characterization of the warm and
hot mechanical behavior of the AA 5052-H32 alloy and sub-
sequently addressing its modeling using advanced Artificial
Intelligence techniques.

3.1 Flow curves of the AA 5052-H32 alloy

Figure 3 shows the flow curves of the AA 5052-H32 alloy
obtained at different temperatures and strain rates. A pro-
nounced influence of temperature on the material strength
is observed. As the deformation temperature increases, the
flow stress decreases significantly, reflecting the thermal
softening behavior characteristic of metallic materials. This
effect is particularly evident when comparing the flow stress
at 100 °C (¢ = 0.011/s), approximately 185 MPa, with that
measured at 400 °C (¢ = 0.011/s), only 37 MPa — corre-
sponding to a reduction of about 80%.

The strain rate also influences the flow stress. At all
evaluated temperatures, higher strain rates resulted in
higher flow stresses, due to the limited action of soften-
ing mechanisms, which require time to develop. Conse-
quently, strain hardening becomes more pronounced at

Fig. 3 Flow stress curves of the

higher strain rates, increasing the resistance to plastic flow.
This effect is less significant than that of temperature but
becomes more pronounced as temperature rises. While at
100 °C the increase in flow stress is only about 7%, at
450 °C the increment exceeds 32%.

The shape of the flow curves also varies with the ther-
mal condition. At 100 °C, for example, a continuous
increase in stress with strain is observed, indicating the
strong influence of strain hardening. At intermediate tem-
peratures, such as 300 °C, the stress increase with strain is
less pronounced. At 450 °C, the curve exhibits an almost
stable plastic region, with little additional increase in flow
stress, revealing the dominant role of thermal softening
mechanisms. Similar behavior for the AA 5052 alloy under
comparable deformation conditions was also reported by
[57].

Table 3 presents the mechanical properties obtained from
the tensile tests. The influence of temperature and strain rate
on the material strength follows the same trend observed in
the flow curves. The values of the elastic modulus (E) vary
significantly with temperature. At 100 °C, E remains close
to 68 GPa, while at 450 °C it decreases to approximately
22 GPa. The results also indicate a tendency for stiffness
to increase with higher strain rates, although this effect is
considerably less pronounced than that of temperature.

Elongation exhibits an inverse behavior compared to the
elastic modulus, increasing with temperature and decreasing
with strain rate. The elongation values ranged from 23.8%
(100 °C, ¢ = 11/s) to 47% (450 °C, ¢ = 0,011/s). Simi-
lar results have already been reported by other researchers
[57-59].

3.2 Hensel-Spittel model

Table 4 presents the parameters of the Hensel-Spittel consti-
tutive equation obtained from fitting the experimental data.

. 250 250
AA 505.2—H32 alloy obtained ——100°C $=0,011/s 100°C @=11/s
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strain rates —a0c 200°C
5 200 300°C — 200 300°C
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Table 3 Mechanical properties

Temperature ~Strain rate s
of the AA 5052-H32 alloy

Elastic modu-  Yield strength Ultimate tensile Elongation (%)

obtained from tensile tests at ¢ lus (GPa) (MPa) strength (MPa)
different temperatures and strain 100 0.01 67.0 61.4 160.8 24.8
rates 100 1 68.0 64.5 173.7 233
200 0.01 42.6 579 115.3 28.6
200 1 44.0 59.1 133.8 26.8
300 0.01 31.2 56.9 69.6 33.0
300 1 32.0 58.0 94.0 322
450 0.01 21.5 32.2 329 47.0
450 1 23.0 47.3 48.8 452
Table 4 Hensel-Spittel
p?a.'r:’a(ranetersefSre thSepAttAc 5052- ¢ ™ ™ s M s " s i
H32 alloy 1247.7 —8.443 0.872 0.030  0.002 —0.101 -2.129 -0.948 0.572

Figure 4 compares the experimental flow stress curves with
those predicted by the model.

Overall, a good agreement was observed between the
modeled and experimental data, as illustrated in Fig. 5,
which depicts the correlation between predicted and meas-
ured flow stress. Although the model achieved a high coef-
ficient of determination (R?=0.9847), indicating strong pre-
dictive capability, its performance varied with the testing
conditions. At higher temperatures, particularly at 450 °C,
the model was less effective in capturing the material’s
behavior, highlighting its limited ability to represent the
dominant thermal softening mechanisms. This shortcom-
ing stems from the phenomenological nature of the model,
whose parameters are obtained by regression within specific
ranges of temperature, strain, and strain rate, thereby restrict-
ing its extrapolation. Nevertheless, the Hensel-Spittel model
remains advantageous due to its widespread implementation

in commercial finite element software, which facilitates
direct integration into numerical simulations of forming
processes.

Analysis of the coefficients provides further insight into
the material behavior. The negative value of parameter m
confirms the expected trend of decreasing flow stress with
increasing temperature, consistent with the typical thermal
softening of metals during hot forming. The positive value
of m, reflects strain hardening, as evidenced by the gradual
increase in strength with true strain.

The influence of strain rate, represented by ms=0.0304,
was found to be minor, indicating low strain-rate sensitivity
under the evaluated conditions. The exponential term ma/g
plays a more significant role at low strains, contributing to
the initial increase in flow stress.

The negative value of ms modulates the (1 + ¢) term,
reducing the effect of strain hardening, particularly at

- 100 °C /0,01 1/s (Exp)
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Fig.5 Comparison between the experimental and Hensel-Spittel
model-predicted flow stress data for the AA 5052-H32 alloy

high temperatures. Parameters m- and ms, both nega-
tive, are important for describing thermal softening and
dynamic recovery, especially at high strains and elevated
temperatures. The positive parameter mo compensates for
the exponential reduction in strength imposed by m, effec-
tively adjusting the slope of the flow curve as a function of
temperature.

3.3 ANN model

The architecture of an Artificial Neural Network (ANN) has
a direct impact on its predictive performance [60], particu-
larly in problems involving complex and nonlinear relation-
ships, such as the prediction of flow stress in the AA 5052-
H32 alloy. To identify the optimal architecture based on the
input variables — strain, strain rate, and temperature — an
automated hyperparameter search algorithm was employed.
This strategy followed an exhaustive and systematic pro-
cess in which different combinations of hidden layers and
activation functions were evaluated in terms of predictive
accuracy.

Several pyramid-structured architectures were manually
defined to represent varying levels of network complexity.
The main characteristics of these architectures are summa-
rized in Table 5. In addition, three widely used activation
functions for regression problems — ReLU, Tanh, and ELU
— were tested. The code implements a nested loop in which,
for each architecture, all activation functions are systemati-
cally combined and evaluated.

For each configuration, a Sequential-type ANN was
constructed with the specified hidden layers and activation
functions. The model was compiled using the Adam opti-
mizer and mean squared error (MSE) as the loss function.
Training was performed with internal validation (validation_
split=0.2) and overfitting control through the EarlyStopping

Table 5 Characteristics of the evaluated ANN architectures

Architecture Hidden Total Neurons Neuron Distribution
Layers

[31, 63] 2 96 64— 32

[128, 64] 2 192 128 — 64

[256, 128] 2 384 256— 128

[512, 256, 128] 3 896 512—256—128

[512, 256, 128, 64] 4 960 512—256— 128 — 64

technique (patience =30). Final performance evaluation was
conducted on the test set using three metrics: mean absolute
error (MAE), mean squared error (MSE), and the coefficient
of determination (R?).

The results from all executions were stored in a list of
dictionaries, which was subsequently converted into a Data-
Frame. This DataFrame was sorted according to the lowest
MSE, allowing an objective identification of the most accu-
rate and robust architectures. Figures 6, 7, and 8§ compare
the MAE, MSE, and R? values for the five best-performing
models.

The experimental data exhibit nonlinear and coupled
relationships between the input variables. For example, flow
stress does not increase linearly with strain and is strongly
influenced by strain rate and, most notably, by temperature
[41]. The best-performing architectures identified were those
with multiple hidden layers organized in a pyramidal struc-
ture, with a progressively decreasing number of neurons.
This type of architecture enables the extraction of high-level
representations from the input variables and promotes good
generalization capability by gradually reducing dimensional-
ity and emphasizing the most relevant interactions.

The activation functions ELU and Tanh appeared in the
best-performing model combinations. The Exponential Lin-
ear Unit (ELU) offers advantages such as smoothness and
improved handling of negative gradients, thereby supporting
more efficient deep learning [61]. The Tanh function, in turn,
is symmetric around zero, which benefits regression tasks
and enhances training convergence. The use of these acti-
vation functions in deep architectures contributed to more
stable training and a better representation of smooth varia-
tions in the data [62].

The top-performing architectures achieved a balance
between fitting capacity and robustness against overfitting.
Very simple networks fail to capture the complexity of the
phenomenon, whereas excessively deep networks tend to
overfit the data.

Figure 9 illustrates the architecture of the Artificial Neu-
ral Network (ANN) selected as the most effective for predict-
ing the flow stress of the AA 5052-H32 alloy. The input layer
receives the strain (@), strain rate (¢), and temperature (T)
values, which represent the deformation conditions of the

@ Springer
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Fig.6 MAE results for the five best-performing ANN models
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Fig.7 MSE results for the five best-performing ANN models
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Fig.8 R? results for the five best-performing ANN models
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Fig.9 Schematic diagram of the
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Fig. 10 Learning curves of the ANN model showing MAE as a func-
tion of the number of epochs

material during tensile testing. These inputs are connected to
the first hidden layer, containing 256 neurons. The processed
signals are then passed to a second hidden layer with 128
neurons. Both hidden layers employ the Exponential Linear
Unit (ELU) activation function. The output layer consists
of a single neuron, responsible for generating the predicted
flow stress value (kf). All layers are fully connected, mean-
ing that each neuron in one layer is connected to every neu-
ron in the subsequent layer, thereby enabling the network
to capture complex interactions among the input variables.

Figures 10 and 11 present the learning curves of the
ANN model in terms of MAE and MSE, respectively. The
curves display the typical behavior of successful ANN train-
ing [63]. During the initial epochs (up to approximately the
20th), a sharp decrease in both training and validation errors
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Fig. 11 Learning curves of the ANN model showing MSE as a func-
tion of the number of epochs

is observed, indicating that the model rapidly learned the
underlying patterns in the data.

After this point, both errors decrease more gradually and
stabilize around epoch 100, with slight natural oscillations,
particularly in the validation curve. Such fluctuations are
expected in well-tuned ANNSs, especially in problems involv-
ing experimental data with inherent variability.

The similarity of error values between the training and
validation sets indicates that the model exhibits good gener-
alization capability, with no evident signs of overfitting. The
selected architecture — consisting of two hidden layers with
256 and 128 neurons, ELU activation, and regularization via
EarlyStopping — proved to be well suited to the nature of
the dataset, which involves nonlinear relationships among
strain, strain rate, and temperature.
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The final performance metrics on the test set were
MAE=3.61 MPa and MSE = 19.09 MPa?, demonstrating
the high accuracy of the model and confirming the robust-
ness of the Artificial Neural Network (ANN) in predicting
the flow stress of the AA 5052-H32 alloy under different
deformation conditions.

Figure 12 reinforces these findings by illustrating the
overlap between the experimental flow curves and those
predicted by the ANN model, highlighting its ability to
accurately capture the alloy’s nonlinear behavior. Unlike
the Hensel-Spittel model, which exhibited limitations in
reproducing the material response at 450 °C, the ANN dem-
onstrated consistent and reliable performance across all test
conditions, showing no significant sensitivity to variations
in temperature and strain rate.

The robust performance of the ANN proposed in this
work is consistent with results previously reported by other
researchers [52, 64-66]. Haghdadi et al. [65] developed a
high-accuracy artificial neural network model to predict the
flow behavior of the A356 aluminum alloy at elevated tem-
peratures. The architecture used by the authors was relatively
simple, consisting of only one hidden layer with 20 neu-
rons, which was justified by the restricted temperature range
evaluated. In that study, the analysis was focused exclusively
on hot-working conditions (400-540 °C).

Moghadam et al. [66] also modeled the plastic deforma-
tion of an aluminum alloy under different thermal regimes
(warm and hot). The authors achieved excellent predictive
performance; however, they proposed two distinct ANN
models: one dedicated to lower temperature ranges and
another for higher temperatures. The network designed for
lower temperatures contained a single hidden layer with 6
neurons, while the network for higher temperatures consisted
of two hidden layers with 2 and 4 neurons, respectively.

In the present work, the mechanical behavior of the AA
5052-H32 alloy under warm and hot forming conditions was
modeled using a single ANN. The greater variability of the
flow stress curves, resulting from the broader diversity of
active deformation mechanisms, required the adoption of
a denser architecture, composed of two hidden layers with
256 and 128 neurons. This configuration proved suitable for
more accurately capturing the nonlinear relationships among
strain, strain rate, and temperature.

3.4 eXtreme gradient boosting model

XGBoost is a machine learning algorithm based on gradi-
ent boosting that uses decision trees as base learners [67]. It
constructs a sequence of trees, where each new tree is trained
to correct the residual errors of the previous ones, thereby
progressively improving prediction accuracy.

In this study, the XGBoost model was trained to predict
the flow stress of the AA 5052-H32 alloy based on experi-
mental data. A configuration with 100 decision trees was
employed. Increasing the number of trees generally improves
the model’s ability to capture complex patterns, but it may
also increase the risk of overfitting if other hyperparameters
are not properly controlled [68].

The maximum depth of each tree was limited to 4. This
parameter controls the number of splits (levels) within a
tree. Shallow trees are less likely to overfit the noise in the
data, resulting in simpler and more generalizable models.
By restricting the depth to 4, the model was encouraged
to combine multiple weak learners, thereby enhancing the
robustness of the final predictive ensemble.

The learning rate was set to 0.1, meaning that each new
tree contributes only 10% of its predictions to the final
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output. This parameter functions as a regularization factor,
slowing down the learning process and making it more con-
trolled. As a result, the model fits the data more gradually,
reducing the likelihood of sudden oscillations or premature
overfitting. Although this requires more iterations to con-
verge, it typically yields models with improved generaliza-
tion capability [69].

Figure 13 schematically illustrates the operation of the
XGBoost regression model developed to predict the flow
stress of the AA 5052-H32 alloy based on experimental
strain (@), strain rate (¢), and temperature (T) data. During
training, the model successively builds 100 decision trees.
Each tree may receive a subset of the data and uses the resid-
uals from the previous stage as its new target to improve
predictions. D1, D,, ..., D, represent the input data at differ-
ent boosting stages. Each tree produces a partial prediction
of the flow stress (Wi, W,, ..., W,), which incrementally
corrects the accumulated errors from earlier stages.

The partial predictions from each tree are not summed in
full; instead, the model applies a learning rate factor (learn-
ing_rate=0.1). The weighted sum of all trees results in the
final prediction of flow stress.

The learning curves of the XGBoost model, plotted as
a function of the number of decision trees (Figs. 14 and
15), show a stable convergence trend for both mean absolute
error (MAE) and mean squared error (MSE). After approxi-
mately 60 estimators, the errors stabilize, indicating that the
model achieves a balance between fitting and generalization.
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Fig. 14 Learning curves of the XGBoost model showing MAE as a
function of the number of decision trees

At the end of training with 100 trees, the model reached
MAE=0.7389 MPa and MSE =2.4585 MPa? — remarkably
low values in the context of flow stress prediction for the
AA 5052-H32 alloy. The close agreement between train-
ing and validation errors suggests that the model learned
efficiently without overfitting, thereby confirming its ability
to accurately capture the complex patterns inherent in the
experimental data (Fig. 16).

The excellent performance of the model is further
evidenced by the scatter plot of actual versus predicted
flow stress values (Fig. 15). Most data points are closely
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XGBoost model

distributed along the 1:1 reference line, indicating an almost
perfect agreement between the experimental measurements
and the model predictions. The coefficient of determination
(R?) was 0.9988, demonstrating that more than 99.8% of
the variability in the experimental data is explained by the
model.

Figure 17 presents the comparison between the experi-
mentally obtained flow stress curves and those predicted
by the XGBoost model for the AA 5052-H32 alloy. An
excellent alignment is observed between the experimental
data and the predicted values, demonstrating the model’s
high predictive capability across all tested conditions. This
performance confirms the robustness and effectiveness of
XGBoost as a modeling approach for describing the mate-
rial’s flow behavior, even in the presence of the nonlinear
complexity inherent to the relationships among strain, strain
rate, and temperature. Similar results were reported by Fan
et al. [70], who applied the XGBoost algorithm to model the
plastic flow of an austenitic steel alloy under warm and hot
deformation conditions.

The outstanding performance of the XGBoost model in
predicting flow stress can be attributed to a combination of
factors related to both its architecture and the nature of the
dataset. First, as a decision tree—based algorithm, it is par-
ticularly effective in handling nonlinear relationships such
as those present in metallic flow curves. Moreover, XGBoost
is recognized for its efficiency even with relatively small
datasets, which is especially advantageous in experimental
contexts where data availability is often limited [69].

Another key advantage is its ability to capture complex
interactions among the input variables (¢, ¢, T), allowing
accurate modeling of their combined influence on the mate-
rial’s strength. Finally, the algorithm incorporates built-in
regularization techniques during training, which help prevent
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overfitting and enhance generalization capability. These fea-
tures make XGBoost particularly well suited for predictive
problems in materials science and process engineering.

4 Conclusions

This study investigated the application of artificial intelli-
gence (Al) techniques to model the deformation behavior
of the AA 5052-H32 aluminum alloy under warm and hot
forming conditions. The main conclusions are presented
below:

Al-based models outperformed the Hensel-Spittel con-
stitutive model. Despite its good accuracy (R*>=0.9847),
the classical model showed limitations at higher tempera-
tures. These results highlight the extrapolation restrictions
inherent to phenomenological models.

Artificial Neural Networks (ANNs) achieved robust
performance under all evaluated conditions. The opti-
mized dense architecture, composed of two hidden lay-
ers (256 and 128 neurons), reached MAE =3.61 MPa and
MSE = 19.09 MPa?, adequately reproducing the nonlinear
and coupled influence of strain, strain rate, and tempera-
ture on flow stress.

The XGBoost model outperformed the other
approaches, achieving MAE =0.74 MPa, MSE =2.46
MPa?, and R?>=0.9988, with excellent overlap between
experimental and predicted curves. Its ensemble structure
of decision trees proved efficient in capturing complex
interactions among process variables while maintaining
high generalization capability. The results demonstrate the
strong robustness of this type of model even with relatively
small datasets, a particularly useful feature in metallurgi-
cal experiments.

The findings showed that AI-based models can provide
higher accuracy and predictive robustness compared to
traditional constitutive equations. The integration of Al
techniques into material behavior modeling emerges as
a promising pathway to expand predictive capacity in
mechanical forming process analysis. Future work should
consider expanding the dataset with other deformation
modes and developing hybrid strategies that combine the
physical interpretability of constitutive models with the
predictive power of machine learning.
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