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Abstract
This study investigates the application of machine learning techniques to predict the deformation behavior of the AA 5052-
H32 aluminum alloy over a wide range of processing conditions. Tensile tests were conducted at different temperatures 
(100–450 °C) and strain rates (0.01 and 1 s⁻1), enabling the acquisition of the material’s flow curves. The experimental data 
were fitted to the Hensel–Spittel constitutive equation and subsequently employed in the development of Artificial Neural 
Network (ANN) and eXtreme Gradient Boosting (XGBoost) models. The AI-based models exhibited superior predictive 
performance compared to the phenomenological approach. The optimized ANN, with a dense architecture consisting of two 
hidden layers with 256 and 128 neurons, achieved a mean absolute error (MAE) of 3.61 MPa and a mean squared error (MSE) 
of 19.09 MPa2. The XGBoost model, configured with 100 decision trees and a maximum depth of 4, delivered even more 
accurate results, with MAE of 0.74 MPa, MSE of 2.46 MPa2, and a coefficient of determination (R2) of 0.9988, showing an 
almost perfect overlap between predicted and experimental curves. These findings confirm the high accuracy and robustness 
of machine learning techniques, highlighting their potential as a superior alternative to traditional phenomenological models 
for predicting flow behavior in forming processes.
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1  Introduction

Advances in the mobility industry have focused on innova-
tive and economically viable solutions aimed at increasing 
vehicle energy efficiency. At the same time, requirements 
related to crash performance have become increasingly strin-
gent. As a result, vehicles are now safer than ever, which has 
driven the use of lightweight and high-strength materials, 
carefully selected to meet these demands [1–4].

Steel alloys still dominate the automotive sector due to 
their excellent cost–performance balance. However, alu-
minum alloys have emerged as a promising alternative to 
conventional materials, playing a key role in reducing vehi-
cle component weight [5]. These alloys are characterized by 
high mechanical strength, good energy absorption capacity, 
high recyclability, and low density, in addition to exhibiting 
good corrosion resistance [6]. Compared to steel, aluminum 
alloys enable weight reduction of up to 50% [7].

Over the past decade, the application of aluminum 
alloys in the automotive industry has increased by more 
than 80%, a trend expected to intensify as new design con-
cepts advance. In 1996, the average amount of aluminum 
employed per vehicle was approximately 110 kg; currently, 
it is estimated that this figure may reach between 250 and 
340 kg in the coming years [8]. A notable example is the 
Audi A8 (2018), whose body structure contains 58% alu-
minum [9]. Historically, most aluminum products intended 
for the automotive sector were obtained by casting; how-
ever, in recent decades, the stamping of aluminum sheets has 
gained prominence, especially in the manufacture of external 
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panels such as hoods and heat shields, as well as structural 
components such as bumper beams [10].

Alloys from the 5xxx and 6xxx series have been widely 
used in automotive body structures [11–15]. In parallel, the 
use of high-strength alloys from the 7xxx and 2xxx series—
traditionally applied in the aerospace sector—is also under 
development [16]. Series 5xxx alloys are non-heat-treatable, 
with strengthening occurring mainly through work harden-
ing. In contrast, 2xxx, 6xxx, and 7xxx series alloys are heat-
treatable, allowing strength improvement through aging and 
precipitation. Regardless of the class, one of the main chal-
lenges in forming these materials lies in achieving adequate 
formability while simultaneously ensuring quality require-
ments and final part properties [17–19].

To mitigate limitations associated with formability and 
springback, aluminum alloys traditionally formed at room 
temperature have been increasingly applied in warm [20–23] 
and hot stamping processes [24–29]. In these methods, the 
sheet is heated and subsequently transferred to the press, 
where it is formed between dies that may be cold, hot, or 
locally heated [24]. After forming, the part remains in the 
dies, which reduces the risk of thermal distortions. These 
approaches allow the production of components with com-
plex geometries and high strength in a single processing step 
[30].

To achieve such results, processes are carefully analyzed 
through numerical simulations. In these analyses, the mate-
rial behavior under plastic deformation constitutes essential 
information, as the accuracy of numerical models directly 
depends on the fidelity with which material flow is repre-
sented. In hot forming in particular, it is necessary to prop-
erly define the relationship between flow stress and thermo-
mechanical parameters of the process. This representation is 
generally carried out using constitutive equations.

Among the various phenomenological constitutive mod-
els, a traditional approach relies on the Zener–Hollomon 
parameter (Z), which represents the strain rate compensated 
by temperature. The Arrhenius-type constitutive equation 
establishes the correlation between this parameter and the 
flow stress through different mathematical relations: power 
law, for relatively low stresses; exponential law, for high 
stresses; and hyperbolic sine law, covering a wide range of 
deformation conditions [31].

Other constitutive formulations explicitly incorporate the 
dependence of flow stress on strain. In this group, the strain-
dependent Garofalo equations [32–35] and the Hensel–Spit-
tel model [36, 37] are noteworthy. The Garofalo equations 
represent an evolution of the Arrhenius formulation by 
including strain as a variable in the constitutive parameters. 
The Hensel–Spittel model relates flow stress to strain, strain 
rate, and temperature. It stands out for its concise formula-
tion, ease of calibration compared with other models, and 
widespread use in commercial finite element software.

Mehtedi et  al. [31] investigated the hot deformation 
behavior of aluminum alloys AA6060 and AA6063 through 
torsion tests conducted between 400 and 550 °C. The alloys’ 
behavior was modeled using power and hyperbolic laws 
associated with the Zener–Hollomon parameter, as well 
as the Hensel–Spittel model. The modeling based on the 
Zener–Hollomon parameter showed the best performance, 
with a correlation coefficient of 0.99. The Hensel–Spittel 
equation achieved average R2 values of 0.96 for AA6060 
and 0.88 for AA6063.

New approaches have been developed, particularly by 
modifying classical models. Liu et al. [29] analyzed the 
flow behavior of AA6061 at temperatures between 350 
and 500 °C and strain rates ranging from 0.01 to 1 s⁻1. For 
this purpose, modified Arrhenius and Cowper–Symonds 
equations were applied. The Cowper–Symonds model 
incorporates the effects of work hardening and strain-rate 
sensitivity during hot metal forming [38, 39]. Both models 
demonstrated high accuracy, with average absolute relative 
errors of 2.90% (modified Arrhenius) and 1.37% (modified 
Cowper–Symonds).

The hot deformation behavior of AA7046 was analyzed 
by He et al. [40] using an improved Hensel–Spittel–Garo-
falo model. This model combines the mathematical structure 
of Garofalo with strain-dependent parameters, in a manner 
analogous to the Hensel–Spittel model. The results indicated 
satisfactory performance, with a coefficient of determination 
R2 = 0.989.

Despite their accuracy, phenomenological models pre-
sent certain limitations. Their parameters do not have direct 
physical meaning, being merely fitting coefficients obtained 
through regression of experimental data. Consequently, the 
model is reliable only within the temperature, strain, and 
strain-rate ranges in which it was calibrated. Outside these 
ranges, the model may generate unrealistic predictions. This 
is particularly critical in finite element analyses, as the soft-
ware may be forced to operate under process conditions not 
represented in laboratory tests.

As an alternative, the possibility of modeling plas-
tic deformation behavior through artificial intelligence 
(AI) models has become highly attractive [41–43]. These 
approaches can capture complex and nonlinear relation-
ships between input and output variables without the need 
to assume a predefined functional form. Furthermore, they 
provide greater flexibility in handling large volumes of 
experimental data and may achieve higher predictive accu-
racy, even under extrapolation conditions.

Another relevant aspect is that AI models are capable 
of simultaneously incorporating multiple process variables, 
which enhances generalization capacity and reduces the 
limitations observed in purely empirical models.

In this work, artificial intelligence-based approaches were 
developed to model the plastic behavior of the aluminum 
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alloy AA 5052-H32, with 1 mm thickness, under warm and 
hot forming conditions. Flow curves were experimentally 
obtained at different temperatures and strain rates, serving 
as the basis for model calibration. eXtreme Gradient Boost-
ing (XGBoost) and Artificial Neural Networks (ANN) algo-
rithms were applied and compared with the classical Hen-
sel–Spittel constitutive model. The objective is to evaluate 
the potential of machine learning techniques for predicting 
deformation behavior over a wide range of processing condi-
tions, providing more accurate predictions than traditional 
phenomenological models.

2 � Materials and methods

Figure 1 schematically illustrates the steps developed in this 
work. Initially, the flow curves of the material under different 
temperature and strain rate conditions were obtained from 
tensile tests. These results served as the basis for modeling 
the plastic behavior of the AA 5052-H32 aluminum alloy, 
employing both the Hensel–Spittel constitutive equation and 
artificial intelligence-based models. Finally, the performance 
of the different models was comparatively evaluated. Each 
of these steps is described in detail in the following sections.

2.1 � Tensile tests

Table 1 presents the chemical composition of the AA 5052-
H32 aluminum alloy with a thickness of 1 mm used in 
this study. The composition falls within the nominal range 
reported in the literature [44].

The material was subjected to tensile tests using a Glee-
ble® 540 thermomechanical simulator. The geometry of the 
tensile specimen is shown in Fig. 2.

During the tests, the samples were heated to the target 
temperature at a controlled rate, held at the specified tem-
perature for 30 s to ensure thermal homogenization, and sub-
sequently deformed until fracture. The thermomechanical 
conditions employed in the hot tensile tests are summarized 
in Table 2.

Fig. 1   Schematic representation of the methodological steps adopted in this study

Table 1   Chemical composition of the 1 mm thick AA 5052-H32 alu-
minum alloy

Al Mg Si Fe Cr Outros

96,9 2,20 0,18 0,31 0,15 0,26

Fig. 2   Detailed geometry of the tensile test specimens
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2.2 � Hensel–Spittel model

A widely employed approach for modeling and predicting 
flow stress during hot deformation was proposed by Hensel 
and Spittel [45–47]:

where C , m1 to m9  are material constants that must be deter-
mined experimentally.

This constitutive model can be regarded as an extension 
of the classical power-law model, incorporating features 
of the Hollomon and Swift equations, with the constants 
expressed as functions of strain and temperature [48]. 
The Hensel–Spittel model effectively captures the com-
bined effects of strain, strain rate, and temperature on flow 
stress, and has been shown to reproduce the hot deforma-
tion behavior of metallic alloys with high accuracy [49]. 
Moreover, it is implemented in most commercial finite 
element (FE) software packages, making the determination 
of its parameters particularly valuable for providing input 
data to FE simulations.

In this study, the methodology adopted for fitting the 
constitutive model was based on linearization of Eq. (1) by 
applying the natural logarithm, which allowed the sequen-
tial determination of the model parameters. By considering 
certain variables constant, different reduced forms of the 
equation were derived to isolate the coefficients associated 
with strain rate, temperature, and strain. Linear regressions 
were then carried out between the experimental data and 
the transformed variables, enabling the extraction of the 
parameters from the average slopes and intercepts obtained 
under different conditions.

2.3 � Modeling using artificial intelligence

Artificial Intelligence (AI)-based models began to be 
applied to metal forming processes in the 1990s. Their 
introduction aimed to overcome inherent limitations of 

(1)kf = C.em1.T .𝜑m2 .𝜑̇m3 .e
m4

𝜑 .(1 + 𝜑)m5.T .em7.𝜑.𝜑̇m8.T .Tm9

traditional approaches, such as the difficulty in accurately 
representing complex material behavior and the challenge 
of optimizing processes involving multiple parameters in 
real time. Since then, AI models have proven highly effec-
tive in addressing the complexity of forming processes, 
providing flexible strategies for modeling nonlinear rela-
tionships and predicting mechanical behavior and fail-
ure. The expansion of AI applications has been driven by 
advances in computational power and the increasing avail-
ability of experimental and simulation data. Consequently, 
AI has become a powerful tool for improving efficiency, 
accuracy, and process control in the field of metal form-
ing [50].

Owing to these characteristics, various AI-based 
approaches have been employed for predicting metal flow 
curves [51–56]. Unlike phenomenological constitutive mod-
els, such as Hensel–Spittel, AI models do not require a priori 
definition of explicit mathematical relationships between 
input and output variables, which confers greater flexibility 
and ease of implementation. However, this also means that 
the underlying physical relationships are not directly embed-
ded in the model [49].

In this study, two AI-based approaches were investigated: 
Artificial Neural Networks (ANN) and eXtreme Gradient 
Boosting (XGBoost). Both models were trained using exper-
imental data obtained from tensile tests on the AA 5052 
alloy, where strain, strain rate, and temperature were varied 
to predict flow stress under different forming conditions.

The methodology began with data preprocessing. The 
input variables — strain ( � ), strain rate ( 𝜑̇ ), and temperature 
(T) — and the output variable — flow stress ( kf  ) — were 
organized into a structured dataset. For the ANN model, the 
Min–Max normalization technique was applied to scale the 
data between 0 and 1, ensuring balanced variable distribu-
tions and improving training stability and convergence.

In the ANN approach, the dataset was divided into train-
ing and test subsets, with 20% reserved for final validation. 
The network architecture was defined through automated 
hyperparameter optimization, systematically exploring com-
binations of hidden layers and activation functions based 
on predictive performance. The final network was trained 
using the Adam optimizer with mean squared error (MSE) as 
the loss function. To mitigate overfitting, an early stopping 
criterion was applied, interrupting training when validation 
loss did not improve for 30 consecutive epochs.

Throughout training, the model’s performance was con-
tinuously monitored using metrics such as mean absolute 
error (MAE) and MSE on both training and validation sets. 
Learning curves were analyzed to confirm training stability 
and generalization capability. Once trained, the ANN model 
was applied to the entire dataset to generate predicted flow 
curves, which were subsequently compared to the experi-
mental results.

Table 2   Thermomechanical parameters of the tensile tests

Condition Temperature, T [°C] Strain rate, 𝜑̇ [1/s]

1 100 0.01
2 100 1
3 200 0,01
4 200 1
5 300 0.01
6 300 1
7 450 0.01
8 450 1
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The methodology applied to the XGBoost model fol-
lowed similar principles. However, this algorithm does not 
require input normalization and is particularly effective for 
tabular datasets. Model tuning was performed through cross-
validation combined with optimization of key hyperparam-
eters, including tree depth, learning rate, and the number of 
estimators. After fine-tuning, the XGBoost predictions were 
compared with the experimental data, enabling a critical 
assessment of its predictive accuracy relative to the ANN.

3 � Results

This section presents the results obtained in this study, start-
ing with the experimental characterization of the warm and 
hot mechanical behavior of the AA 5052-H32 alloy and sub-
sequently addressing its modeling using advanced Artificial 
Intelligence techniques.

3.1 � Flow curves of the AA 5052‑H32 alloy

Figure 3 shows the flow curves of the AA 5052-H32 alloy 
obtained at different temperatures and strain rates. A pro-
nounced influence of temperature on the material strength 
is observed. As the deformation temperature increases, the 
flow stress decreases significantly, reflecting the thermal 
softening behavior characteristic of metallic materials. This 
effect is particularly evident when comparing the flow stress 
at 100 °C ( 𝜑̇ = 0.011∕s ), approximately 185 MPa, with that 
measured at 400 °C ( 𝜑̇ = 0.011∕s ), only 37 MPa — corre-
sponding to a reduction of about 80%.

The strain rate also influences the flow stress. At all 
evaluated temperatures, higher strain rates resulted in 
higher flow stresses, due to the limited action of soften-
ing mechanisms, which require time to develop. Conse-
quently, strain hardening becomes more pronounced at 

higher strain rates, increasing the resistance to plastic flow. 
This effect is less significant than that of temperature but 
becomes more pronounced as temperature rises. While at 
100 °C the increase in flow stress is only about 7%, at 
450 °C the increment exceeds 32%.

The shape of the flow curves also varies with the ther-
mal condition. At 100  °C, for example, a continuous 
increase in stress with strain is observed, indicating the 
strong influence of strain hardening. At intermediate tem-
peratures, such as 300 °C, the stress increase with strain is 
less pronounced. At 450 °C, the curve exhibits an almost 
stable plastic region, with little additional increase in flow 
stress, revealing the dominant role of thermal softening 
mechanisms. Similar behavior for the AA 5052 alloy under 
comparable deformation conditions was also reported by 
[57].

Table 3 presents the mechanical properties obtained from 
the tensile tests. The influence of temperature and strain rate 
on the material strength follows the same trend observed in 
the flow curves. The values of the elastic modulus (E) vary 
significantly with temperature. At 100 °C, E remains close 
to 68 GPa, while at 450 °C it decreases to approximately 
22 GPa. The results also indicate a tendency for stiffness 
to increase with higher strain rates, although this effect is 
considerably less pronounced than that of temperature.

Elongation exhibits an inverse behavior compared to the 
elastic modulus, increasing with temperature and decreasing 
with strain rate. The elongation values ranged from 23.8% 
(100 °C, 𝜑̇ = 11∕s ) to 47% (450 °C, 𝜑̇ = 0,011∕s ). Simi-
lar results have already been reported by other researchers 
[57–59].

3.2 � Hensel–Spittel model

Table 4 presents the parameters of the Hensel–Spittel consti-
tutive equation obtained from fitting the experimental data. 

Fig. 3   Flow stress curves of the 
AA 5052-H32 alloy obtained 
under different temperatures and 
strain rates
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Figure 4 compares the experimental flow stress curves with 
those predicted by the model.

Overall, a good agreement was observed between the 
modeled and experimental data, as illustrated in Fig. 5, 
which depicts the correlation between predicted and meas-
ured flow stress. Although the model achieved a high coef-
ficient of determination (R2 = 0.9847), indicating strong pre-
dictive capability, its performance varied with the testing 
conditions. At higher temperatures, particularly at 450 °C, 
the model was less effective in capturing the material’s 
behavior, highlighting its limited ability to represent the 
dominant thermal softening mechanisms. This shortcom-
ing stems from the phenomenological nature of the model, 
whose parameters are obtained by regression within specific 
ranges of temperature, strain, and strain rate, thereby restrict-
ing its extrapolation. Nevertheless, the Hensel–Spittel model 
remains advantageous due to its widespread implementation 

in commercial finite element software, which facilitates 
direct integration into numerical simulations of forming 
processes.

Analysis of the coefficients provides further insight into 
the material behavior. The negative value of parameter m₁ 
confirms the expected trend of decreasing flow stress with 
increasing temperature, consistent with the typical thermal 
softening of metals during hot forming. The positive value 
of m₂ reflects strain hardening, as evidenced by the gradual 
increase in strength with true strain.

The influence of strain rate, represented by m₃ = 0.0304, 
was found to be minor, indicating low strain-rate sensitivity 
under the evaluated conditions. The exponential term m₄/� 
plays a more significant role at low strains, contributing to 
the initial increase in flow stress.

The negative value of m₅ modulates the ( 1 + � ) term, 
reducing the effect of strain hardening, particularly at 

Table 3   Mechanical properties 
of the AA 5052-H32 alloy 
obtained from tensile tests at 
different temperatures and strain 
rates

Temperature 
(°C)

Strain rate (s⁻1) Elastic modu-
lus (GPa)

Yield strength 
(MPa)

Ultimate tensile 
strength (MPa)

Elongation (%)

100 0.01 67.0 61.4 160.8 24.8
100 1 68.0 64.5 173.7 23.3
200 0.01 42.6 57.9 115.3 28.6
200 1 44.0 59.1 133.8 26.8
300 0.01 31.2 56.9 69.6 33.0
300 1 32.0 58.0 94.0 32.2
450 0.01 21.5 32.2 32.9 47.0
450 1 23.0 47.3 48.8 45.2

Table 4   Hensel-Spittel 
parameters for the AA 5052-
H32 alloy

C m1 m2 m3 m4 m5 m7 m8 m9

1247.7 −8.443 0.872 0.030 0.002 −0.101 −2.129 −0.948 0.572

Fig. 4   Comparison between the 
experimental and Hensel-Spittel 
model-predicted flow stress 
curves of the AA 5052-H32 
alloy
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high temperatures. Parameters m₇ and m₈, both nega-
tive, are important for describing thermal softening and 
dynamic recovery, especially at high strains and elevated 
temperatures. The positive parameter m₉ compensates for 
the exponential reduction in strength imposed by m₁, effec-
tively adjusting the slope of the flow curve as a function of 
temperature.

3.3 � ANN model

The architecture of an Artificial Neural Network (ANN) has 
a direct impact on its predictive performance [60], particu-
larly in problems involving complex and nonlinear relation-
ships, such as the prediction of flow stress in the AA 5052-
H32 alloy. To identify the optimal architecture based on the 
input variables — strain, strain rate, and temperature — an 
automated hyperparameter search algorithm was employed. 
This strategy followed an exhaustive and systematic pro-
cess in which different combinations of hidden layers and 
activation functions were evaluated in terms of predictive 
accuracy.

Several pyramid-structured architectures were manually 
defined to represent varying levels of network complexity. 
The main characteristics of these architectures are summa-
rized in Table 5. In addition, three widely used activation 
functions for regression problems — ReLU, Tanh, and ELU 
— were tested. The code implements a nested loop in which, 
for each architecture, all activation functions are systemati-
cally combined and evaluated.

For each configuration, a Sequential-type ANN was 
constructed with the specified hidden layers and activation 
functions. The model was compiled using the Adam opti-
mizer and mean squared error (MSE) as the loss function. 
Training was performed with internal validation (validation_
split = 0.2) and overfitting control through the EarlyStopping 

technique (patience = 30). Final performance evaluation was 
conducted on the test set using three metrics: mean absolute 
error (MAE), mean squared error (MSE), and the coefficient 
of determination (R2).

The results from all executions were stored in a list of 
dictionaries, which was subsequently converted into a Data-
Frame. This DataFrame was sorted according to the lowest 
MSE, allowing an objective identification of the most accu-
rate and robust architectures. Figures 6, 7, and 8 compare 
the MAE, MSE, and R2 values for the five best-performing 
models.

The experimental data exhibit nonlinear and coupled 
relationships between the input variables. For example, flow 
stress does not increase linearly with strain and is strongly 
influenced by strain rate and, most notably, by temperature 
[41]. The best-performing architectures identified were those 
with multiple hidden layers organized in a pyramidal struc-
ture, with a progressively decreasing number of neurons. 
This type of architecture enables the extraction of high-level 
representations from the input variables and promotes good 
generalization capability by gradually reducing dimensional-
ity and emphasizing the most relevant interactions.

The activation functions ELU and Tanh appeared in the 
best-performing model combinations. The Exponential Lin-
ear Unit (ELU) offers advantages such as smoothness and 
improved handling of negative gradients, thereby supporting 
more efficient deep learning [61]. The Tanh function, in turn, 
is symmetric around zero, which benefits regression tasks 
and enhances training convergence. The use of these acti-
vation functions in deep architectures contributed to more 
stable training and a better representation of smooth varia-
tions in the data [62].

The top-performing architectures achieved a balance 
between fitting capacity and robustness against overfitting. 
Very simple networks fail to capture the complexity of the 
phenomenon, whereas excessively deep networks tend to 
overfit the data.

Figure 9 illustrates the architecture of the Artificial Neu-
ral Network (ANN) selected as the most effective for predict-
ing the flow stress of the AA 5052-H32 alloy. The input layer 
receives the strain ( � ), strain rate ( 𝜑̇​), and temperature (T) 
values, which represent the deformation conditions of the 

Fig. 5   Comparison between the experimental and Hensel-Spittel 
model-predicted flow stress data for the AA 5052-H32 alloy

Table 5   Characteristics of the evaluated ANN architectures

Architecture Hidden 
Layers

Total Neurons Neuron Distribution

[31, 63] 2 96 64 → 32
[128, 64] 2 192 128 → 64
[256, 128] 2 384 256 → 128
[512, 256, 128] 3 896 512 → 256 → 128
[512, 256, 128, 64] 4 960 512 → 256 → 128 → 64
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Fig. 6   MAE results for the five best-performing ANN models

Fig. 7   MSE results for the five best-performing ANN models

Fig. 8   R2 results for the five best-performing ANN models
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material during tensile testing. These inputs are connected to 
the first hidden layer, containing 256 neurons. The processed 
signals are then passed to a second hidden layer with 128 
neurons. Both hidden layers employ the Exponential Linear 
Unit (ELU) activation function. The output layer consists 
of a single neuron, responsible for generating the predicted 
flow stress value ( kf  ). All layers are fully connected, mean-
ing that each neuron in one layer is connected to every neu-
ron in the subsequent layer, thereby enabling the network 
to capture complex interactions among the input variables.

Figures 10 and 11 present the learning curves of the 
ANN model in terms of MAE and MSE, respectively. The 
curves display the typical behavior of successful ANN train-
ing [63]. During the initial epochs (up to approximately the 
20th), a sharp decrease in both training and validation errors 

is observed, indicating that the model rapidly learned the 
underlying patterns in the data.

After this point, both errors decrease more gradually and 
stabilize around epoch 100, with slight natural oscillations, 
particularly in the validation curve. Such fluctuations are 
expected in well-tuned ANNs, especially in problems involv-
ing experimental data with inherent variability.

The similarity of error values between the training and 
validation sets indicates that the model exhibits good gener-
alization capability, with no evident signs of overfitting. The 
selected architecture — consisting of two hidden layers with 
256 and 128 neurons, ELU activation, and regularization via 
EarlyStopping — proved to be well suited to the nature of 
the dataset, which involves nonlinear relationships among 
strain, strain rate, and temperature.

Fig. 9   Schematic diagram of the 
ANN architecture

Fig. 10   Learning curves of the ANN model showing MAE as a func-
tion of the number of epochs

Fig. 11   Learning curves of the ANN model showing MSE as a func-
tion of the number of epochs
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The final performance metrics on the test set were 
MAE = 3.61 MPa and MSE = 19.09 MPa2, demonstrating 
the high accuracy of the model and confirming the robust-
ness of the Artificial Neural Network (ANN) in predicting 
the flow stress of the AA 5052-H32 alloy under different 
deformation conditions.

Figure 12 reinforces these findings by illustrating the 
overlap between the experimental flow curves and those 
predicted by the ANN model, highlighting its ability to 
accurately capture the alloy’s nonlinear behavior. Unlike 
the Hensel–Spittel model, which exhibited limitations in 
reproducing the material response at 450 °C, the ANN dem-
onstrated consistent and reliable performance across all test 
conditions, showing no significant sensitivity to variations 
in temperature and strain rate.

The robust performance of the ANN proposed in this 
work is consistent with results previously reported by other 
researchers [52, 64–66]. Haghdadi et al. [65] developed a 
high-accuracy artificial neural network model to predict the 
flow behavior of the A356 aluminum alloy at elevated tem-
peratures. The architecture used by the authors was relatively 
simple, consisting of only one hidden layer with 20 neu-
rons, which was justified by the restricted temperature range 
evaluated. In that study, the analysis was focused exclusively 
on hot-working conditions (400–540 °C).

Moghadam et al. [66] also modeled the plastic deforma-
tion of an aluminum alloy under different thermal regimes 
(warm and hot). The authors achieved excellent predictive 
performance; however, they proposed two distinct ANN 
models: one dedicated to lower temperature ranges and 
another for higher temperatures. The network designed for 
lower temperatures contained a single hidden layer with 6 
neurons, while the network for higher temperatures consisted 
of two hidden layers with 2 and 4 neurons, respectively.

In the present work, the mechanical behavior of the AA 
5052-H32 alloy under warm and hot forming conditions was 
modeled using a single ANN. The greater variability of the 
flow stress curves, resulting from the broader diversity of 
active deformation mechanisms, required the adoption of 
a denser architecture, composed of two hidden layers with 
256 and 128 neurons. This configuration proved suitable for 
more accurately capturing the nonlinear relationships among 
strain, strain rate, and temperature.

3.4 � eXtreme gradient boosting model

XGBoost is a machine learning algorithm based on gradi-
ent boosting that uses decision trees as base learners [67]. It 
constructs a sequence of trees, where each new tree is trained 
to correct the residual errors of the previous ones, thereby 
progressively improving prediction accuracy.

In this study, the XGBoost model was trained to predict 
the flow stress of the AA 5052-H32 alloy based on experi-
mental data. A configuration with 100 decision trees was 
employed. Increasing the number of trees generally improves 
the model’s ability to capture complex patterns, but it may 
also increase the risk of overfitting if other hyperparameters 
are not properly controlled [68].

The maximum depth of each tree was limited to 4. This 
parameter controls the number of splits (levels) within a 
tree. Shallow trees are less likely to overfit the noise in the 
data, resulting in simpler and more generalizable models. 
By restricting the depth to 4, the model was encouraged 
to combine multiple weak learners, thereby enhancing the 
robustness of the final predictive ensemble.

The learning rate was set to 0.1, meaning that each new 
tree contributes only 10% of its predictions to the final 

Fig. 12   Comparison between 
the experimental and ANN-
predicted flow stress curves of 
the AA 5052-H32 alloy
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output. This parameter functions as a regularization factor, 
slowing down the learning process and making it more con-
trolled. As a result, the model fits the data more gradually, 
reducing the likelihood of sudden oscillations or premature 
overfitting. Although this requires more iterations to con-
verge, it typically yields models with improved generaliza-
tion capability [69].

Figure 13 schematically illustrates the operation of the 
XGBoost regression model developed to predict the flow 
stress of the AA 5052-H32 alloy based on experimental 
strain ( � ), strain rate ( 𝜑̇ ), and temperature (T) data. During 
training, the model successively builds 100 decision trees. 
Each tree may receive a subset of the data and uses the resid-
uals from the previous stage as its new target to improve 
predictions. D₁, D₂, …, Dₙ represent the input data at differ-
ent boosting stages. Each tree produces a partial prediction 
of the flow stress (W₁, W₂, …, Wₙ), which incrementally 
corrects the accumulated errors from earlier stages.

The partial predictions from each tree are not summed in 
full; instead, the model applies a learning rate factor (learn-
ing_rate = 0.1). The weighted sum of all trees results in the 
final prediction of flow stress.

The learning curves of the XGBoost model, plotted as 
a function of the number of decision trees (Figs. 14 and 
15), show a stable convergence trend for both mean absolute 
error (MAE) and mean squared error (MSE). After approxi-
mately 60 estimators, the errors stabilize, indicating that the 
model achieves a balance between fitting and generalization.

At the end of training with 100 trees, the model reached 
MAE = 0.7389 MPa and MSE = 2.4585 MPa2 — remarkably 
low values in the context of flow stress prediction for the 
AA 5052-H32 alloy. The close agreement between train-
ing and validation errors suggests that the model learned 
efficiently without overfitting, thereby confirming its ability 
to accurately capture the complex patterns inherent in the 
experimental data (Fig. 16).

The excellent performance of the model is further 
evidenced by the scatter plot of actual versus predicted 
flow stress values (Fig. 15). Most data points are closely 

Fig. 13   Schematic diagram of 
the XGBoost regression model 
operation

Fig. 14   Learning curves of the XGBoost model showing MAE as a 
function of the number of decision trees
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distributed along the 1:1 reference line, indicating an almost 
perfect agreement between the experimental measurements 
and the model predictions. The coefficient of determination 
(R2) was 0.9988, demonstrating that more than 99.8% of 
the variability in the experimental data is explained by the 
model.

Figure 17 presents the comparison between the experi-
mentally obtained flow stress curves and those predicted 
by the XGBoost model for the AA 5052-H32 alloy. An 
excellent alignment is observed between the experimental 
data and the predicted values, demonstrating the model’s 
high predictive capability across all tested conditions. This 
performance confirms the robustness and effectiveness of 
XGBoost as a modeling approach for describing the mate-
rial’s flow behavior, even in the presence of the nonlinear 
complexity inherent to the relationships among strain, strain 
rate, and temperature. Similar results were reported by Fan 
et al. [70], who applied the XGBoost algorithm to model the 
plastic flow of an austenitic steel alloy under warm and hot 
deformation conditions.

The outstanding performance of the XGBoost model in 
predicting flow stress can be attributed to a combination of 
factors related to both its architecture and the nature of the 
dataset. First, as a decision tree–based algorithm, it is par-
ticularly effective in handling nonlinear relationships such 
as those present in metallic flow curves. Moreover, XGBoost 
is recognized for its efficiency even with relatively small 
datasets, which is especially advantageous in experimental 
contexts where data availability is often limited [69].

Another key advantage is its ability to capture complex 
interactions among the input variables ( � , 𝜑̇ , T), allowing 
accurate modeling of their combined influence on the mate-
rial’s strength. Finally, the algorithm incorporates built-in 
regularization techniques during training, which help prevent 

Fig. 15   Learning curves of the XGBoost model showing MSE as a 
function of the number of decision trees

Fig. 16   Scatter plot of actual versus predicted values from the 
XGBoost model

Fig. 17   Comparison between 
the experimental and XGBoost 
model-predicted flow stress 
curves of the AA 5052-H32 
alloy
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overfitting and enhance generalization capability. These fea-
tures make XGBoost particularly well suited for predictive 
problems in materials science and process engineering.

4 � Conclusions

This study investigated the application of artificial intelli-
gence (AI) techniques to model the deformation behavior 
of the AA 5052-H32 aluminum alloy under warm and hot 
forming conditions. The main conclusions are presented 
below:

AI-based models outperformed the Hensel–Spittel con-
stitutive model. Despite its good accuracy (R2 = 0.9847), 
the classical model showed limitations at higher tempera-
tures. These results highlight the extrapolation restrictions 
inherent to phenomenological models.

Artificial Neural Networks (ANNs) achieved robust 
performance under all evaluated conditions. The opti-
mized dense architecture, composed of two hidden lay-
ers (256 and 128 neurons), reached MAE = 3.61 MPa and 
MSE = 19.09 MPa2, adequately reproducing the nonlinear 
and coupled influence of strain, strain rate, and tempera-
ture on flow stress.

The XGBoost model outperformed the other 
approaches, achieving MAE = 0.74  MPa, MSE = 2.46 
MPa2, and R2 = 0.9988, with excellent overlap between 
experimental and predicted curves. Its ensemble structure 
of decision trees proved efficient in capturing complex 
interactions among process variables while maintaining 
high generalization capability. The results demonstrate the 
strong robustness of this type of model even with relatively 
small datasets, a particularly useful feature in metallurgi-
cal experiments.

The findings showed that AI-based models can provide 
higher accuracy and predictive robustness compared to 
traditional constitutive equations. The integration of AI 
techniques into material behavior modeling emerges as 
a promising pathway to expand predictive capacity in 
mechanical forming process analysis. Future work should 
consider expanding the dataset with other deformation 
modes and developing hybrid strategies that combine the 
physical interpretability of constitutive models with the 
predictive power of machine learning.
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