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A B S T R A C T

Uncertainties in photovoltaic solar energy production can make it challenging to dispatch energy into the
electricity grid. Although photovoltaic generation storage solves this problem, a forecasting of the photovoltaic
solar energy produced is necessary to control the energy injected into the grid. This article aims to develop the
probabilistic methodology Reduced-Rank Regression (RRR) for forecasting photovoltaic generation in the short
and medium terms. The RRR methodology forecasting uses the generation data of a grid-connected photovoltaic
system. The proposed RRR model is simple, easy to access and apply, and does not use irradiance data. The model
developed uses the multivariate statistical analysis technique. A advantage is that with a correlation with the
performance indices of photovoltaic solar energy systems, the proposed method can be applied in any
geographical location on the planet and with different photovoltaic solar energy systems. The application of the
RRR methodology requires two searches/inputs. The first input is weather forecast data obtained from a weather
forecasting platform, and the second is actual historical data on photovoltaic generation at the site where the
method was developed. The proposed method was compared with the persistence method. Using a horizon of
1–10 h, the average monthly root mean square error for the RRR ranged from 7.3 % to 50.1 %. For the
persistence method, the average monthly root mean square error ranged from 15.1 % to 65.0 %. Therefore, with
the horizon of 24 h, the average monthly root mean square error for the RRR ranged from 4.5 % to 43.2 %. For
the persistence method, the average monthly root mean square error ranged from 11.5 % to 75.0 %. We show
experimentally that our method is competitive with the state-of-the-art in terms of obtaining photovoltaic
generation forecasting without using solar radiation data.

Abbreviations: RRR, Reduced rank regression method; UFSC, Federal University of Santa Catarina; PV, Photovoltaics; DG, Distributed generation PV System; FPV,
Forecasting photovoltaic generation; HRT, Time resolution horizon; PF, Final standard value; PFP, Final profile standard; GHI, Global horizontal irradiance; AG,
Actual generation of the photovoltaic system; P, Predicted; AG, Average actual generation; PM, Persistence Method; NWP, Numerical weather prediction variables;
WD, Wavelet decomposition; RMSE, Root mean squared error; MAE, Mean absolute error; MAPE, Mean absolute percent error; MBE, Mean bias error; NMAE,
normalized mean absolute error; MeanC, Combined mean; MedianC, Combined median; NRMSE, Normalized root mean squared error; RRMSE, Relative root mean
squared error; GA, Genetic algorithms; ANN, Artificial neural networks; AR, Autoregressive; ARMA, Autoregressive moving average; PHANN, Physical-hybrid-
artificial neural network; NN, Neural networks; ELM, Extreme learning machine; SVM, Support vector machine; LM, Linear model; LRIC, combined linear regression
interacts; LRC, Combined linear regression; LSTMC, Combined long short-term memory; SVRLC, Combined support vector regression with linear Kernel; SVRGC,
Combined support vector regression with Gaussian Kernel; YF, Final Yield; PFPPVS, Final standard future forecasting photovoltaic system profile; PFPPSD, Final
standard profile of the photovoltaic system where the method was implemented; Pphotovoltaic PVS, Photovoltaic system power from future prediction; Pphotovoltaic PSD,
Power of the photovoltaic system of the developed method.
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1. Introduction

Uncertainties in photovoltaic (PV) generation can make dispatching
the energy produced into the electricity grid difficult. Although PV
storage solves this problem, it is necessary to forecast the photovoltaic
generation (FPV) produced to control the energy injected into the grid
(Barbieri et al., 2017; Böök and Lindfors, 2020).

Integrating PV into the electricity matrix still presents some chal-
lenges that must be overcome. These are mainly related to the inter-
mittent nature of PV generation (Gong et al., 2023). As PV generation
begins to reach a considerable percentage of the electricity matrix, the
development of FPVs becomes indispensable (Böök and Lindfors, 2020;
Wirth, 2020).

The integration of PV systems requires care in managing and con-
trolling the energy produced. The variability of PV generation results in
voltage variations at the entrance to the transmission or distribution
network. Voltage variations can damage protection equipment and
power quality itself, and they may increase the cost of energy (Barbieri
et al., 2017; Böök and Lindfors, 2020).

To maintain the reliability of the electrical distribution network,
understanding and planning are required to mitigate the effect of the
uncertainties of PV generation and the inherent variability of the system.
Power generators and transmission and distribution lines are likely to
fail due to the demand for electricity varying throughout the day.
Generation variability also becomes a factor with the addition of gen-
eration sources such as solar PV. The transmission and distribution
system must be prepared and physically capable of responding to this
variability in power generation (Dyreson et al., 2014).

The FPV is important for maintaining the stability of electrical grids
connected to PVs systems (Zhou et al., 2019). Next-day forecasting is
crucial for managing storage systems in PV power plants (Sangrody
et al., 2020).

The energy produced by PVs plants depends on a series of meteo-
rological variables, such as solar irradiation, air temperature, cloud
cover, wind speed, and relative humidity, among others (Zhang et al.,
2021; Luque and Hegedus, 2011). Photovoltaic forecasting is a consid-
erably tricky challenge (Ahmed et al., 2020; Das et al., 2018).

The FPV is the application of several steps with large databases,
unreliable measurements, and multiple input-output observations. On
the other hand, reliable forecasting makes it possible to offer plant
managers/directors reliability. Forecasting minimizes the deviations
between programmed energy and energy produced (Antonanzas et al.,
2016).

Solar radiation forecasting provides information about the un-
certainties in generating electricity from a solar photovoltaic plant. By
knowing these uncertainties, it is possible to manage the electricity
input into the grid without causing disturbances and power fluctuations
(Bakker et al., 2019; Dimd et al., 2023).

Several studies have been carried out on solar photovoltaic energy
generation forecasting in recent years. The most economically devel-
oped countries, such as Germany, the United States, China, and others,
have carried out the most studies in this area (Mosavi et al., 2019; Blaga
et al., 2019). Many studies use data from devices and sensors that cap-
ture information to forecasting photovoltaic generation, such as mete-
orological information and solar irradiance (Maciel, 2022; Yang and
Dong, 2018).

Given the importance of studying FPV plants in Brazil, the invest-
ment situation, and the exponential growth of solar PV energy in the
country, there is a need to develop and apply methodologies for fore-
casting solar PV energy generation in Brazil. The purpose of this article is
to present a methodology for forecasting PV generation (RRR) using the
generation data from a distributed generation PV system (DG) located at
the Federal University of Santa Catarina, UFSC, Campus Araranguá - SC,
in the southern region of the state of Santa Catarina, Brazil. The appli-
cation of the RRR methodology requires two searches/entries. The first
input is weather forecast data obtained from a weather forecasting

platform, and the second input is actual historical PV generation data at
the location where the RRR method was developed. Once the FPV in a
given location has been completed, we can use correlations with the
performance indices and apply the methodology to carry out the fore-
casting in any location on the planet for any configuration of PV systems.

The developed model utilizes the technique of multivariate statistical
analysis. Multivariate statistical analysis generally involves exploring
the variations in a set of interrelated variables or investigating the
simultaneous relationships between two or more sets of variables
(Reinsel and Velu, 1998). When analyzing weather forecasting, the
meteorological platform analyzes data such as atmospheric pressure,
rainfall, air humidity, temperature, among others. In the real data of
photovoltaic system generation, variables such as solar radiation, tem-
perature, shading, spectral mismatch, dirt, mismatch losses, cabling
losses, among others, are embedded.

The classic multivariate regression model does not make direct use of
the fact that the response variables are probably correlated. A more
serious practical concern is that even for a moderate number of variables
whose interrelationships are to be investigated, the number of param-
eters in the regression matrix can be large. Thus, in many practical sit-
uations, there is a need to reduce the number of parameters in the model
and this problem can be addressed through the assumption of reduced
rank of the matrix (Reinsel and Velu, 1998). The model developed in the
article has some characteristics and adaptations of Reduced-Rank
Regression.

The RRR model offers several advantages over other models by using
the production data from a photovoltaic solar energy system instead of
irradiance data in photovoltaic production forecasts. In the RRR model,
due to the use of generation data for forecasting, some parameters are
already incorporated and do not need to be dealt with, such as the
soiling of the photovoltaic modules, shading, the spectral mismatch of
the photovoltaic cells with the radiation spectrum, losses due to
mismatch, losses due to cabling, losses due to series and parallel resis-
tance, among others.

1.1. Forecasting method categories and models

Numerous PV forecasting methods using solar radiation forecasting
have been developed in the literature (Table 1). According to (Diagne
et al., 2013), the existing global horizontal irradiance (GHI) forecasting
methods and models can be classified according to the input data, which
also determines the forecasting horizon. The main methods used are the

Table 1
Methods and models used to forecasting global horizontal irradiance (GHI).

Method Subcategory Model Time Scale

Persistence Global irradiance at
time t+1 best
predicted by its value
at time t (Ẑt+1 = Zt).

Short-term
accuracy

Statistic Serie Temporal
Model

Autoregressive(AR)
Autoregressive
moving average
(ARMA)

Short-term
accuracy
Short-term
accuracy

Statistic Neural Network Artificial Neural
Networks (ANNs)

Short-term
accuracy

Based on
satellite
data/
images

Geoestationary
Satellite Image

Image processing Good
performance in
intervals from
30 min to 6 h

Based on sky
images

Total sky image Image processing Good
performance in
sub-hours
interval

Basedo on
numerical
weather
models

Numerical weather
prediction
variables (NWP)

Global Forecast
System

Accurate for
longer
predictions
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persistence method, the satellite data/image method, the numerical
weather forecasting method, the sky image method, and statistical
methods. An overview of the methods is shown in Table 1.

The main factors affecting the performance of prognostics used in PV
forecasting are the time horizon and time resolution, weather condi-
tions, geographical location, and the availability and quality of data
(Nespoli et al., 2019).

About these parameters, different prognoses can be chosen for a
particular need: physical methods (Wolff et al., 2016; Dolara et al.,
2015), which are mainly based on the use of numerical weather fore-
casting (NWP) models (Larson et al., 2016; Zhang et al., 2019), or sat-
ellite images that can be used to develop regional models (Jang et al.,
2016). In this case, meteorological data from satellite images is often
used for long-term forecasting (Pelland et al., 2013). NWP models are
widely used to forecasting the state of the atmosphere for the next 15
days and do not require historical data (Pelland et al., 2013).

These methods can provide good precision but depend mainly on the
stability of the climatic conditions. However, the implementation of
physical models is generally relatively difficult, as it requires a series of
parameters and expensive equipment that is not always available in
many areas of the world. In addition, for most of the NWPs available, the
first few hours of forecasts are not particularly useful for solar fore-
casting (Tuohy et al., 2015).

1.2. Photovoltaic generation forecast studies

In (Mellit and Kalogirou, 2008) a review was carried out on a series
of techniques that use artificial neural networks (ANNs) to forecasting
the power produced by photovoltaic systems. The authors showed that
techniques based on artificial intelligence have great potential for esti-
mating photovoltaic power. Forecasting based on recurrent neural net-
works (RNNs) have been recognized as the most accurate.

In (Antonanzas et al., 2016), regression techniques and methods
based on artificial intelligence were included. The authors found that
statistical approaches perform better than parametric approaches. The
authors mentioned that the latest techniques use linear model (LM)
methods, including support vector machine (SVM), extreme learning
machine (ELM), and so on. These techniques allow for easy modeling
without the need to know the characteristics of the photovoltaic system.

In (Raza et al., 2016), a complete review was provided, including
time series, ANNs, and some hybrid approaches. A comparison between
ANNs-based models and classical time series models was also presented.
The conclusions were that forecasting and accuracy can be improved by
pre and post-processing the historical data. ANNs performed better than
other classical time series approaches.

In (Sobri et al., 2018), it was concluded that ANN and SVM-based
methods are widely used due to their ability to solve complex,
non-linear forecasting problems. Ensemble methods capable of
improving forecasting accuracy have been found; they can merge linear
and non-linear methods.

A comparative study between physical and hybrid methods for
photovoltaic day-ahead forecasting was presented in (Ogliari et al.,
2017). The conclusion was that physical-hybrid-artificial neural net-
works (PHANN) always show the highest accuracy. Using the PHANN
model, the authors obtained a normalized mean absolute error (NMAE)
of 5.6 %.

In (Ahmed et al., 2020) a general review of recent studies on direct
short-term forecasting methods for photovoltaic generation based on
historical data was carried out. The authors pointed out that forecasting
models based on ANN and SVM perform well under fast and varied
environmental conditions. The optimized algorithm significantly
increased forecasting accuracy. Genetic algorithms (GA) represented
one of the most viable optimization techniques for photovoltaic energy
forecasting.

In (Babalhavaeji et al., 2023), the authors explored how both spatial
and temporal information can be considered through a deep learning

approach. The authors proposed a photovoltaic generation forecasting
that considers spatial and temporal information. A convolutional neural
network is used as a pre-processing step to capture spatial information.
The convolutional neural network is followed by a gated recurrent unit
neural network to model temporal characteristics. The proposed model
can forecast a horizon for which there is no available information on
irradiance, humidity, or wind. The authors experimentally demon-
strated that the method is competitive with the state of the art in terms of
time and memory, resulting in better forecasting performance.

In (Dewangan et al., 2020), different combined photovoltaic
day-ahead forecasting methods were explored for three plants located in
Australia. Photovoltaic day-ahead forecasting is the most relevant when
studying planning and strategies for electricity dispatch. The authors
used twelve NWP variables and energy time series recorded from April
1, 2012 to June 30, 2014. The authors pointed out that combined
forecasting are used when it is difficult to determine the best forecasting
model among several forecasting models. Different forecasting models
have different learning methods. Thus, the forecasting outputs have
different information, which can be combined to obtain an accurate
model. Candidate forecasting models must have satisfactory accuracy to
participate in combined forecasting, and poorly performing forecasting
models should not be considered when forming the combined fore-
casting model. Combined forecasting methods include simple averages
with equal weights, median, linear, and non-linear regression. The au-
thors obtained the best mean square error (RMSE) of 7.79 % for the
combined Average C model at plant 1 for the first month. At plant 2, the
best RMSE was 15.36 % for the combined linear regression interacts
combined (LRIC) model. Plant 3 showed the combined linear regression
(LRC) model as the best, with an RMSE of 8.71 %. The second month’s
best RMSE was 7.37 % for plant 2 using the combined support vector
regression with linear kernel (SVRLC) model. For plant 1, the best RMSE
was 9.80 % using the combined median (MedianC) model. For plant 3,
the best RMSE was 9.19 % using the combined long short-term memory
(LSTMC) model. In the third month, the best RMSE was 10.72 % using
the combined LSTMC model for plant 3. Plant 1 had the best RMSE,
12.11 %, using the combined support vector regression with Gaussian
(SVRGC) model. At plant 3, the best RMSE was 10.72 % for the LSTMC
model.

In (Zhu et al., 2015), a hybrid method for forecasting photovoltaic
generation was presented that combined the advantages of wavelet
decomposition (WD) and artificial neural networks (ANN). The authors
used theoretical solar irradiance and meteorological variables as input
for the hybrid model based on WD and ANN. The output power of the
photovoltaic plant was decomposed using WD to separate the helpful
information from the disturbances. ANNs are used to build the models of
the decomposed photovoltaic output power. Finally, the outputs of the
ANNs models are reconstructed into the predicted power of the photo-
voltaic plant. The method presented is compared with the traditional
ANN-based forecasting method. The results show that the method
described in this paper requires less calculation time and has better
forecasting accuracy. On clear days, the WD + ANN hybrid model
showed an RMSE of 7.19 %, while the ANN model showed 9.31 %. The
WD + ANN showed an RMSE of 19.66 % for rainy days, while the ANN
showed 22.95 %. On cloudy days, the WD + ANN model showed an
RMSE of 16.82 %, while the ANN method showed 18.51 %.

1.3. Persistence method

The persistence methods (PMs) are more straightforward forecasting
methods and are used as a reference for more developed models. Clas-
sical PMs assume that the conditions (solar irradiance, generation, clear
sky index, etc.) remain the same between the current time t and t + fh.
The persistence model is recommended when the time series is sta-
tionary (Antonanzas et al., 2016). The forecasting of generation at time t
is given by Eq. 1 (Antonanzas et al., 2016):
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Pp (t + fh) = P(t) (1)

PMs have some desirable characteristics, including (i) simplicity, a
method that does not require any training or intelligence; (ii) speed, a
computational method that is quick to implement and easy to operate;
and (iii) repeatability, a method that consistently produces an expected
result for the same input (Maciel, 2022).

1.4. Contributions

This article aims to achieve high accuracy in forecasting short-and
medium-term photovoltaic generation. We have made the following
contributions.

1. A new photovoltaic forecasting methodology is proposed based on
just two searches/inputs. The first input is weather forecast data
from meteorological platforms, and the second is actual historical
data on photovoltaic generation at the site where the methodology
was developed.

2. The proposed RRR model is simple, easy to access and apply, and
does not use irradiance data. Once the photovoltaic forecasting in
one location has been completed, we can use correlations with the
performance indices and apply the methodology to carry out the
forecasting in any location on the planet and in any configuration of
photovoltaic systems.

3. Some parameters are already built into the model and do not need to
be dealt with, such as soiling of the photovoltaic modules, shading,
spectral mismatch of the photovoltaic cells with the radiation spec-
trum, losses due to mismatch, losses due to cabling, losses due to
series and parallel resistance, among others.

2. Methodology

This section refers to the development of the photovoltaic generation
forecasting methodology (RRR) using the grid-connected photovoltaic
system of Federal University of Santa Catarina (UFSC) and the Ventusky
weather forecast platform. The grid-connected photovoltaic system used
in this article for the development of the method is located at UFSC,
whose campus is in the city of Araranguá, SC, latitude: 28◦56’S and
longitude: 49◦29’W.

2.1. Distributed generation photovoltaic systems at the Federal University
of Santa Catarina, Araranguá – SC

The photovoltaic system at UFSC – Araranguá Campus consists of 3
photovoltaic modules model 330PHK-36 from the manufacturer BYD
with an individual nominal power of 330 Wp and 1 inverter model
PHB1500-NS from the manufacturer PHB Solar with a nominal power of
1.5 kW. The system’s power output is 0.99 kWp.

The photovoltaic array is installed on the roof of a bioclimatic pilot
plant located at the Center for Science, Technology and Health at UFSC.
The system data is shown in Table 2.

2.2. Reduced-rank regression methodology for forecasting photovoltaic
generation

The proposed methodology is based on a relationship with a mete-
orological weather forecasting platform and photovoltaic generation
data from the location where the forecasting is to be made. It was
developed at UFSC’s distributed generation photovoltaic systems, Ara-
ranguá Campus.

The RRR methodology forecasts future photovoltaic generation in a
short and medium-term time resolution horizons (HRT). The short-term
HRT is considered to be a forecasting of 1–10 h in the future (daily). The
medium-term HRT forecasts 24 h in the future (the next day). The
application of the RRR is simple and only requires two searches/entries.
The first input is weather forecast data from the weather forecasting
platform, and the second is a final standard value (PF) obtained from
real historical photovoltaic generation data from the site where the RRR
method was developed.

Using the PF obtained from historical data and a weather forecasting
network platform, it is possible to predict future generation for the re-
gion in which the photovoltaic system is installed for each type of
weather forecast available on the platform. The first step in forecasting
photovoltaic generation is to obtain the PF value for each month of the
year and for each type of weather forecast from a given search platform.
For a preliminary analysis of the methodology, the weather forecasting
platform used is Ventusky.

2.2.1. Ventusky platform
The Ventusky platform was developed at InMeteo. On it, weather

forecasts were extracted every day. On the day of the search, the forecast
was extracted from 8 a.m. until 6 p.m. For the following day (24 h
ahead), the forecast was extracted every three hours (6 a.m., 9 a.m.,
12 p.m., 3 p.m., and 6 p.m.) because the platform does not provide
hourly data. The weather forecasts provided by the platform were
assigned as sunny, sunny with a few clouds, sunny with few clouds,
sunny with many clouds, sunny and rain showers, sunny and cirrus,
foggy, totally cloudy, rainy, heavy rain, rain and thunderstorms, moon,
moon with few clouds and moon with a few clouds.

2.2.2. Obtaining the final standard value of forecasting for different
weather forecasts using the Ventusky platform

Based on the generation curves (Fig. 1) and the weather forecasts
obtained using the Ventusky platform, a final standard value (PF) of
forecasting was obtained for each interval (time) between 6 a.m. and
6 p.m. The hourly PF value was also obtained for each month of the year.
The first PF forecasting value found was for all the months of the year
with a forecast of sunny days (clear skies). The other PF values with
different day forecasts were obtained in the same way as for sunny days.
From the sunny generation curve for each month of the year, the gen-
eration was integrated for each hourly interval, including 6 a.m. to 6 p.
m. The generation curves for rain and thunderstorm forecasts were not
obtained. In the period analyzed, from March 2022 to February 2023, it
was not possible to obtain a complete day with this forecast. Fig. 2 shows
the diagram representing the steps to obtain the forecasting PF value.

2.2.3. Survey of the final profile standard (PFP) used to forecasting RRR
generation using the Ventusky platform

Because the Ventusky weather forecasting platform has a very broad
legend for each type of day, the platform’s weather forecast types have
been divided into three profiles (Table 3).

The profiles shown in Table 3 were used to obtain the values for each
profile (sunny, intermediate, and rainy). However, photovoltaic gener-
ation forecasting are obtained for each profile. This is obtained using Eq.
2, by averaging the PFs of the types of forecasting for each profile. The
photovoltaic generation forecastings for the city of Araranguá-SC were
made using each profile, using the Ventusky platform.

Table 2
UFSC photovoltaic system specifications – Araranguá – SC.

SFGD Specifications

Nominal system power 0,99 kWp
Photovoltaic arrangement 1 string - 3 module
Tilt angle 20◦

Azimuthal deviation (module orientation) 0◦ N
Module manufacturer/model BYD/330PHK− 36
Unit power of the modules 330 Wp
Invertor 1x PHB1500-NS
Nominal power of the invertor 1,5 kW
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Fig. 1. Photovoltaic power curves of the UFSC photovoltaic system, Araranguá – SC.

Fig. 2. Flowchart for obtaining the final forecasting standard value for each month of the year and for each weather forecast.
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PFP =
1
n
∑n

1
PFi (2)

After determining the average standard value of the final profile
(PFP) at the location of the photovoltaic system where the RRR meth-
odology was applied, the (PFP) can be correlated with the final yield
(YF) to obtain forecasting in other geographical regions.

The first step is to find the value of the final standard profile of the
photovoltaic system (PFPPVS) that will be used for the photovoltaic
forecast at the other location. The value of (PFPPVS) is determined using
the value of the average of the final profile standard of the photovoltaic
system where the method was implemented (PFPPSD) and the power of
both photovoltaic systems (Eq. 3).

PFPPVS =
PFPPSD x PphotovoltaicPVS

PphotovoltaicPSD
(3)

The second step is to use the YF from the previous year at the location
where the method was developed in the month for which the forecasting
is to be determined. With this YF and the YF of the location for which the
forecasting is to be determined, the (PFPSPV) of the site to be forecasted
for photovoltaic generation is determined (Eq. 4).

PFPPVS =
PFPPVS x YF (PVS)

YF (PSD)
(4)

The (PFPPVS) can be determined for hourly intervals of each month
and for each profile of meteorological data.

2.2.4. Horizon of time resolution
The main factors affecting performance in forecasting photovoltaic

generation are the time-horizon, time resolution (HRT), weather con-
ditions, geographical location, availability, and quality of data (Nespoli
et al., 2019).

The time resolution horizon used in this work is for short and
medium-term forecasting. The short-term horizon can vary from 1 min
to 24 h. The medium-term horizon can vary from 24 h to 1 week. In this
study, a forecasting horizon of the day (1–10 h in the future) and 24 h in
the future (next day) is being adopted. In the 1–10 h future horizon,
generation forecastings were made between 8 a.m. and 6 p.m. at hourly
intervals. In the 24 h future horizon, generation forecastings were made
between 6 a.m. and 6 p.m. in 3 h intervals because the Ventusky plat-
form offers weather forecasts in these intervals.

2.2.5. Statistical metrics for evaluating the performance of the proposed
method

In (Gueymard, 2014), a detailed review was carried out on the main
statistical metrics used for solar radiation forecasting. According to
(Barbieri et al., 2017), a forecasting model’s performance is often
evaluated by root mean square error (RMSE), normalized root mean
square error (nRMSE), relative root mean square error (rRMSE), mean
absolute error (MAE), or mean bias error (MBE), among other means.

The root mean square error (RMSE), given by Eq. 5, is a quadratic
scoring rule that estimates the average magnitude of error. It is the most
standard function used to calculate the difference between predicted
and observed values, since it reflects the level of differences between the
actual and forecasted values (Piotrowski et al., 2022). The mean abso-
lute error (MAE), Eq. 6, corresponds to the estimated level of absolute

error. This level indicates the average magnitude of the actual value and
the predicted value (Yildiz et al., 2021). The mean absolute percentage
error (MAPE), Eq. 7, calculates the percentage error relative to the
actual value, which is stated as the average ratio, and is also commonly
used to compare different models (Zheng and Wu, 2019). The metrics
used in this work are presented in Eqs. 5, 6, and 7.

RMSE[%] =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1
N
∑n

i=1
(AG − P)2

√

AG
.100 (5)

MAE[%] =
1
N
∑N

i− 1|AG − P|
AG

.100 (6)

MAPE[%] =
1
N

∑N

i=1

⃒
⃒
⃒
⃒
AG − P

AG

⃒
⃒
⃒
⃒.100 (7)

In which: AG = actualgeneration;P = predictedgeneration;AG =

average actual generation.
The errors used in the article were calculated in percentages. RMSE,

MAE, and MAPE were obtained at hourly intervals from 8 a.m. to 6 p.m.
for the three profiles with an HRT from 1 to 10 h in the future. Annual
average errors were also obtained for the three profiles using RMSE,
MAE, and MAPE. The monthly average error was obtained using RMSE,
MAE, and MAPE for all the months in the interval analyzed. For the 24-h
HRT, errors were found at intervals of 6–7 a.m., 9–10 a.m., 12–1 p.m.,
3–4 p.m., and 6–7 p.m. The results were compared with PM.

3. Results and discussions

This section presents the results obtained from the proposed method,
as well as relevant discussions about them.

3.1. Analysis of hourly photovoltaic generation forecasting for the profiles
developed using horizon of time resolution of 1–10 h

Table 4 shows the hourly RMSE, MAE and MAPE values using RRR
and PM for the sunny, intermediate, and rainy profiles. The RRR method
showed lower RMSE, MAE and MAPE values than the PM method at all
time intervals in the sunny, intermediate, and rainy profiles.

The sunny profile showed lower RMSE, MAE, and MAPE than the
other three profiles. The sunny profile has the characteristic of not
varying solar radiation over a short period of time. The RMSE for the
RRR method was between 20.2 % and 28.4 %. The PM showed RMSE
values of between 36.8 % and 57.7 %. In the sunny profile, the times
with the highest solar radiation had the lowest RMSE, MAE, and MAPE.
The smallest errors were between the 9–10 a.m. and 1–2 p.m. intervals.

The intermediate profile showed the highest RMSE, MAE and MAPE
compared to the 3 profiles. This is the profile with the greatest challenge
in terms of photovoltaic forecasting accuracy. It is the most challenging
due to the increase in cloud circulations. The RMSE for the RRR method
was between 45.0 % and 63.5 %. PM showed RMSE values between
76.6 % and 95.6 %. The lowest RMSE was between 4 p.m. and 5 p.m.
MAE and MAPE followed the same profile as RMSE, maintaining lower
values for the RRR method when compared to PM.

The rainy profile showed RMSE values between the sunny and in-
termediate profiles in most intervals. In the 11 a.m.–12 p.m., 2–3 p.m.,
and 3–4 p.m. intervals, the rainy profile showed lower RMSE than the
sunny profile. The RMSE for the RRR method ranged from 21.5 % to
154.8 %. The PM showed RMSE values between 114.7 % and 263.5 %.
The lowest RMSE was between 11 a.m. and 12 p.m. The MAE and MAPE
followed the same profile as the RMSE, maintaining lower values for the
RRR method when compared to the PM.

The RRR method showed more significant errors between 5 p.m. and
6 p.m. in the sunny and rainy profiles. These errors do not have a rela-
tive energetic impact because this interval has low irradiation. In the

Table 3
Weather forecast profiles obtained from the Ventusky platform.

Profiles Types of Ventusky Forecasts

Sunny sunny, sun with few clouds, sun with a few clouds and sun and cirrus
clouds

Intermediate sunny with lots of clouds, sunny with rain showers and totally cloudy
Rainy rain, showers and thunderstorms and heavy rains
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Table 4
Errors in the three profiles at hourly intervals for the months of March 2022 to February 2023, using the RRR and MP methods.

8–9 am 9–10 am 10–11 am 11–12 am 12–1 pm 1–2 pm 2–3 pm 3–4 pm 4–5 pm 5–6 pm

RMSE [%] - SUNNY
RRR 25,9 22,8 20,8 23,3 20,2 23,7 25,5 26,7 27,8 28,4
PM 41,9 42,7 36,8 38,2 38,7 37,0 40,1 41,6 50,6 57,7
MAE [%] - SUNNY
RRR 14,9 13,2 12,1 12,7 10,9 13,7 14,0 15,6 17,2 20,4
PM 28,8 28,7 24,7 26,0 25,8 23,6 26,0 26,3 34,5 36,9
MAPE [%] - SUNNY
RRR 46,1 25,6 20,3 24,9 19,6 24,0 38,3 36,4 38,3 33,6
PM 68,0 71,0 29,8 30,2 31,5 27,0 45,9 44,1 51,6 48,9
RMSE [%] - INTERMEDIATE
RRR 49,0 50,7 62,9 57,6 58,8 56,5 63,5 56,4 45,0 50,1
PM 85,1 85,9 86,1 80,4 79,5 95,6 91,1 81,0 82,7 76,6
MAE [%] - INTERMEDIATE
RRR 34,8 40,6 47,0 43,5 42,0 39,9 45,5 41,7 35,4 32,0
PM 81,1 75,7 68,9 63,6 70,0 80,2 73,1 67,6 69,8 52,5
MAPE [%] - INTERMEDIATE
RRR 48,1 44,2 51,8 57,6 55,0 43,6 76,6 67,9 67,5 84,4
PM 120,3 113,7 105,8 95,1 136,1 120,3 129,9 110,0 260,3 128,5
RMSE [%] - RAINY
RRR 33,9 33,8 31,7 21,5 63,1 51,9 21,9 18,8 86,9 154,8
PM 123,1 168,1 172,3 128,9 119,8 126,7 114,7 128,4 263,5 177,4
MAE [%] - RAINY
RRR 21,4 21,7 18,7 12,0 32,1 24,8 13,3 10,8 53,2 75,9
PM 102,3 383,9 133,7 102,6 82,9 105,8 87,6 110,2 211,2 144,1
MAPE [%] - RAINY
RRR 32,6 37,3 27,6 16,8 30,8 23,6 27,0 17,0 170,3 241,8
PM 144,0 167,8 183,7 134,2 137,4 243,3 187,7 274,7 306,4 375,5

Fig. 3. Graph of RRR and MP forecasting with the 7-day GR for the seasons.
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intermediate profile, the errors in the hourly intervals with the lowest
irradiation were close to those of the other intervals. The RRR method
proved to be a more effective and accurate model for the sunny and
rainy profiles.

Fig. 3 also shows the performance of the photovoltaic generation
forecast between the RRR and PM methods. The considered horizon was
only from HRT= 1–10 h. Seven consecutive days were analyzed for each
season, including the three weather forecast profiles. Prediction using
the RRR method was compared with actual generation of the photo-
voltaic system (AG) and forecasting using the PM method. The

performance graphs visually show that RRR performed better than PM
in all seasons. In the summer season, the RRR method performed well
over the seven consecutive days. The PM method showed poorer per-
formance compared to both RRR and the actual generation. In the
autumn season, the RRR method performed well on the first three days,
as well as on the sixth and seventh days. On the fourth and fifth days, the
RRR method’s performance dropped due to the Ventusky platform not
being as accurate. The PM method showed poorer performance
compared to both RRR and the AG. In the winter season, the RRR
method showed poorer performance on the second, third, fourth, fifth,

Fig. 4. Box Plot of the generation and forecasting for the profiles in the hourly intervals from March 2022 to February 2023 for an HRT = 1–10 h.
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and sixth days. On the first and seventh days, the RRR method per-
formed better. During the winter season, the consecutive days selected
exhibited considerable instability, which posed challenges for photo-
voltaic forecasting. In the spring season, the RRR method performed
well on the first, second, fifth, sixth, and seventh days. On the third and
fourth days, the RRR method showed poorer performance. The PM
method performed worse compared to both RRR and the AG on the first,
second, and fourth days.

The forecasting of photovoltaic generation using the two forecasting
methods shows more significant uncertainty on days with intermediate
and rainy profiles in all seasons. Fig. 4 shows that RRR forecasting
performs better than PM in all seasons, regardless of the profile. Fig. 4
shows that the RRR forecasting had a smaller amplitude when compared
to the generation and PM forecasting for the sunny, intermediate, and
rainy profiles.

In the sunny profile, the smaller amplitude is due to the values being
close throughout the year for each hourly interval. The RRR showed less
annual hourly variation in forecasting than the PM. RRR showed a
higher correlation with generation at all intervals than PM.

For the intermediate profile (Fig. 4), the RRR method showed a lower
annual hourly forecasting variation when compared to PM and a higher
correlation with generation at all intervals when compared to PM.

In the rainy season profile (Fig. 4), the RRR method also showed a
lower annual hourly forecasting variation than the PM. The RRR showed
a higher correlation with generation at all intervals than the PM.

3.2. Analysis of hourly photovoltaic generation forecasting for the profiles
developed using horizon of time resolution of 24 h

Table 5 shows the hourly RMSE, MAE, and MAPE values using RRR
and PM for the sunny, intermediate, and rainy profiles. No photovoltaic
generation was detected for the rainy profile in the 6–7 p.m. time in-
terval. For HRT= 24 h, the RRR method also showed lower RMSE, MAE,
and MAPE values than the PM method in all hourly intervals in the
sunny, intermediate, and rainy profiles.

The sunny profile again showed the lowest RMSE, MAE, and MAPE
compared to the three profiles. The RMSE for the RRR method ranged
from 21.1 % to 65.0 %. The PM showed RMSE values between 38.8 %
and 75.7 %. Again, for the sunny profile, the times with the highest solar
radiation had the lowest RMSE, MAE, and MAPE. The smallest errors
were between the 9–10 a.m. and 12–1 p.m. intervals.

The intermediate profile showed higher RMSE, MAE, and MAPE than
the three profiles. Only in the 3–4 p.m. interval the RRR method showed
lower RMSE and MAPE than the rainy profile. The RMSE for the RRR
method ranged from 54.6 % to 104.1 %. The PM showed RMSE values
between 74.9 % and 122.4 %. The lowest RMSE was in the interval with
the highest solar radiation between 12 p.m. and 1 p.m. The MAE and
MAPE followed the same profile as the RMSE, maintaining lower values
for the RRR method when compared to the PM.

Again, for HRT = 24 h, the rainy profile showed RMSE values be-
tween the sunny and intermediate profiles in most intervals. In the
3–4 p.m. interval, the rainy profile had a higher RMSE than the sunny
and intermediate profiles. The RMSE for the RRR method ranged from
30.6 % to 87.0 %. The PM showed RMSE values between 138.5 % and
297.2 %. The lowest RMSE was between 9 a.m. and 10 a.m. The RMSE,
MAE, and MAPE had lower values than the PM.

The future 24-h horizon had higher errors compared to the 1–10 h
horizon. The RMSE for the RRR method was 0.9–36.6 % higher. The
MAE for the RRR method was 1.5–27.7 % higher, and the MAPE was
2.7–24.4 % higher.

The RRR method showed greater errors in the interval between 5 p.
m. and 6 p.m. in the sunny profile and between 6 a.m. and 7 a.m. for the
intermediate and rainy profiles. Again, the larger errors in these in-
tervals do not have a relative energy impact because these intervals have
low photovoltaic generation.

RRR for the following day proved to be a much more efficient
method than PM in the rainy profile. In the intermediate profile, RRR
was closer to PM. In the sunny profile, the PM method is more assertive
due to the lower intensity of cloud cover. However, the RRR method was
more efficient than PM in the sunny profile.

Analyzing Fig. 5, it can be seen that the RRR forecasting again had a
smaller amplitude than the generation and PM forecasting for the sunny
profile. This smaller amplitude is due to the hourly values being close
throughout the year for the sunny profile. The RRR method showed a
lower annual hourly forecasting variation when compared to PM and a
higher correlation with generation at all intervals when compared to
PM.

For the intermediate profile (Fig. 5), the RRR method again had a
smaller amplitude than the PM generation and forecasting. The RRR
method showed less annual hourly variation in forecasting than the PM.
Compared to PM, the RRR method had a higher correlation with
photovoltaic generation at all intervals.

In the rainy profile (Fig. 5), the RRR method also showed a lower
annual hourly forecasting variation than PM. Compared to PM, the RRR
method obtained a higher correlation with photovoltaic generation in all
hourly intervals.

3.3. Analysis of monthly photovoltaic generation forecasting through
average errors using horizon of time resolution of 1–10 h and horizon of
time resolution of 24 h

Table 6 shows the monthly average RMSE, MAE, and MAPE values
for the RRR method and PM with HRT = 1–10 h and HRT = 24 h. Using
a horizon of 1–10 h, the average monthly RMSE for the RRR ranged from
7.3 % to 50.1 %. For the PM method, the average monthly RMSE ranged
from 15.1 % to 65.0 %. Therefore, with HRT = 24 h, the average
monthly RMSE for the RRR ranged from 4.5 % to 43.2 %. For the PM
method, the average monthly RMSE ranged from 11.5 % to 75.0 %.

In the HRT = 1–10 h, the RRR outperformed the PM in almost all the
months in the interval analyzed. On the other hand, in April 2022, the
RRR showed higher RMSE, MAE, and MAPE than the PM. Using HRT =

Table 5
Errors in the three profiles at hourly intervals for the months of March 2022 to
February 2023, using the RRR and PM methods.

6–7 am 9–10 am 12 am-1 pm 3–4 pm 6–7 pm

SUNNY
RMSE [%]
RRR 42,1 21,1 23,5 26,8 65,0
PM 75,7 38,9 40,1 38,8 67,1
MAE [%]
RRR 26,1 12,4 13,1 15,9 48,1
PM 54,7 24,7 26,4 25,7 53,2
MAPE [%]
RRR 52,8 22,3 22,7 29,1 70,5
PM 72,0 25,5 32,1 30,2 70,8
INTERMEDIATE
RMSE [%]
RRR 104,1 57,3 54,6 66,3 89,1
PM 122,4 74,9 77,6 81,1 119,5
MAE [%]
RRR 81,1 44,0 39,8 52,4 54,1
PM 94,1 62,8 59,6 63,4 95,0
MAPE [%]
RRR 109,3 74,4 59,8 95,7 19,2
PM 168,4 129,8 144,2 147,1 69,4
RAINY
RMSE [%]
RRR 87,0 30,6 34,9 73,0 -
PM 297,2 138,5 172,7 256,6 -
MAE [%]
RRR 66,3 19,7 26,8 48,4 -
PM 216,3 116,3 147,8 202,1 -
MAPE [%]
RRR 64,3 28,0 26,7 62,2 -
PM 151,6 400,7 175,6 386,4 -
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24 h, the RRR performed better in all months of the interval. April 2022
was a very unstable, cloudy, and rainy month. As a result, the Ventusky
platform was less assertive regarding predicting the weather. In April
2022, the Ventusky platform performed better when forecasting the next
day’s weather than the day’s forecast. However, the higher the asser-
tiveness of the weather forecasting platform, the higher the performance

of the RRR method.
When we used the RRR for HRT = 24 h, we observed that the RMSE

was lower when compared to HRT = 1–10 h in Jan./23, Apr./22, Jun./
22, Jul./22, Aug./22 and Nov./22. This result shows that the RRR
method is reliable for short and medium-term horizons. The MAE error
followed the same pattern as the RMSE in Jan./23, Apr./22, Jun./22,

Fig. 5. Box Plot of the generation and forecasting for the profiles in the hourly intervals from March 2022 to February 2023 for an HRT = 24 h.
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and Aug./22, being smaller when comparing HRT = 24 h with HRT =

1–10 h. The MAPE error followed the same pattern as the RMSE in Jan./
23, Apr./22, and Jul./23, being lower when comparing HRT= 24 h with
HRT = 1–10 h.

The RRR method’s performance is close to that of the methods in
literature. Compared to the study by (Dewangan et al., 2020), January
2023 obtained a lower RMSE than all the methods combined for the
three plants in the four months presented by (Dewangan et al., 2020).

In February 2023 and June and November 2022, the RRR method
performed similarly to the combined methods of (Dewangan et al.,
2020) for plant 2.

For January, the RRR method had a lower MAPE than all the
methods evaluated by (Dewangan et al., 2020) in months one, three, and
four. In the second month, (Dewangan et al., 2020) showed lower MAPE
than the RRR method when using the combined SVRGC, SVRLC, MeanC,
and MedianC methods. The RRR method showed the highest MAPE of
the other 12 methods presented in the paper.

Many of these differences are due to photovoltaic generation fore-
casting being carried out in different locations, methodologies, pre-
mises, assumptions, and climates. The number of data points also favors
better performance of the RRR method.

3.4. Analysis of the forecasting of annual photovoltaic generation through
average daily errors using horizon of time resolution of 1–10 h and horizon
of time resolution of 24 h

Annual average RMSE, MAE and MAPE were obtained for the three

profiles. Table 7 shows the values obtained. The best performance of the
RRR was for the rainy profile (HRT = 1–10 h) with an annual average
RMSE of 9.9 %.

As expected, the intermediate profile had a higher average RMSE
value, 25.0 %. This is the most challenging profile to forecasting. In this
profile, solar radiation is intermittent due to a significant accumulation
and passage of clouds. For the sunny profile, the average RMSE was
15.7 %. Comparing RRR with PM for all profiles (HRT = 1–10 h and
HRT = 24 h), the RRR method outperformed PM.

In the study by (Zhu et al., 2015), the authors found an RMSE of
9.3 % (ANN) and 7.19 % (WD + ANN) for forecasting clear-sky weather.
The RRR method obtained a lower performance of 6.4 % compared to
ANN and 8.5 % compared to WD + ANN. One of the reasons for the
lower performance of the RRR method is that the sunny profile
considered forecasts of sun with some clouds and sun with few clouds
together with clear skies. These forecasts have clouds passing through
during the day, so it is not a totally sunny day.

When forecasting cloudy weather, the authors (Zhu et al., 2015)
found an RMSE of 18.5 % (ANN) and 17.6 % (WD + ANN). The RRR
method had a lower performance of 6.5 % compared to ANN and 7.4 %
compared to WD + ANN. The RRR method considered the forecast of
sunshine and rain showers as an intermediate profile, thus increasing the
variability of irradiance throughout the day.

For the rainy profile, the RRR method showed an average RMSE of
9.9 %, while (Zhu et al., 2015), for the rainy forecast, showed an RMSE
of 22.9 % for the ANN method and 19.6 % for the WD + ANN method.
The RRR method performed better for the rainfall profile than the two
methods presented by (Zhu et al., 2015).

For HRT = 24 h, the RRR method obtained higher RMSE, MAE, and
MAPE than for HRT = 1–10 h. In the sunny profile, the RMSE, MAE, and
MAPE were 2.7 %, 1.2 %, and 6.6 %, respectively, higher when
compared to HRT = 1–10 h. In the intermediate profile, they were
8.7 %, 7.4 %, and 12.8 % higher when comparing HRT = 24 h with HRT
= 1–10 h. For the rainy profile, it was 13.4 %, 7.9 %, and 16.1 % higher
when comparing HRT = 24 h with HRT = 1–10 h.

Regarding photovoltaic forecasting for the following day (HRT =

24 h), the RRR method was performed closely with the forecasting for
the day (HRT = 1–10 h). The difference in assertiveness when
comparing the two forecasting horizons is due to the Ventusky plat-
form’s lower performance when forecasting the following day.

In general, the RRR method performed closely to the literature.
These differences are due to the different methodologies, forecast sites,
and model assumptions. If the number of data points increases and the

Table 6
Monthly average daily RMSE, MAE and MAPE for the RRR and PM methods with HRT = 1–10 h and HRT = 24 h.

Horizon from 1 h to 10 h

Jan/23 Feb/23 Mar/22 Apr/22 May/22 Jun/22 Jul/22 Aug/22 Sep/22 Oct/22 Nov/22 Dec/22

RMSE [%]
RRR 7,3 11,8 30,4 50,1 13,7 17,8 20,5 23,3 23,7 24,1 15,7 15,3
PM 15,1 20,4 65,0 42,9 41,2 36,5 39,3 38,9 63,0 36,1 37,3 31,3
MAE [%]
RRR 5,0 7,9 20,3 38,9 11,5 12,3 14,7 16,3 20,2 17,2 8,9 12,1
PM 12,5 16,7 49,2 37,1 28,1 30,4 31,4 24,8 53,0 27,5 26,2 23,6
MAPE [%]
RRR 6,1 9,6 27,8 49,4 12,6 13,5 20,3 30,2 28,7 27,6 11,7 16,5
PM 13,1 18,4 64,4 48,8 38,3 39,7 37,4 31,0 86,1 34,8 26,6 26,5
Horizon from 24 h

Jan/23 Feb/23 Mar/22 Apr/22 May/22 Jun/22 Jul/22 Aug/22 Sep/22 Oct/22 Nov/22 Dec/22
RMSE [%]
RRR 4,5 15,0 43,2 34,4 22,4 15,3 19,9 21,8 30,1 32,5 18,2 20,5
PM 11,5 16,0 69,5 44,4 31,8 40,9 29,8 58,7 75,0 56,2 35,9 20,8
MAE [%]
RRR 4,4 10,6 26,8 25,3 14,0 11,1 15,2 15,4 25,2 24,5 10,7 13,1
PM 8,2 13,8 48,5 38,2 22,9 31,2 21,8 40,8 59,9 46,8 23,8 15,8
MAPE [%]
RRR 4,4 11,6 45,4 29,1 14,5 14,7 18,0 44,9 43,5 34,0 15,5 19,5
PM 8,2 14,7 89,0 68,4 35,6 32,5 24,2 114,0 97,3 88,3 29,1 21,2

Table 7
Annual mean daily error RSME, MAE and MAPE for the three profiles.

PROFILES RMSE
(%) RRR

MAE
(%)
RRR

MAPE
(%) RRR

RMSE
(%) PM

MAE
(%) PM

MAPE
(%)
PM

Sunny* 15,7 9,7 11,9 20,4 15,5 15,7
Intermediate

*
25,0 19,4 19,7 47,8 37,2 44,7

Rainy* 9,9 8,3 8,7 85,6 63,5 78,5
Sunny** 18,4 10,9 18,5 31,6 21,5 26,9
Intermediate

**
33,7 26,8 32,5 52,7 43,4 65,5

Rainy** 23,3 16,2 24,8 173,2 126,0 140,8

* Horizon from 1 h to 10 h.
** Horizon from 24 h
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forecasting time is longer, the RRR model will perform better. Another
way to increase the method’s assertiveness is to use more accurate
weather forecasting platforms. The advantage of using the RRR model is
that there is no need to invest heavily in measuring equipment in
conjunction with the operating photovoltaic system.

4. Conclusions

This paper has presented a new method for forecasting photovoltaic
generation in the short and medium term. The advantage of the method
is that it uses only two data inputs: the first is actual historical electricity
generation data from a distributed generation system, and the second is
weather forecast data from a weather forecasting platform. In predicting
annual photovoltaic generation with HRT = 1–10 h and HRT = 24 h, the
RRR method performed better than PM in the sunny, intermediate, and
rainy profiles. When forecasting monthly photovoltaic generation with
HRT = 1–10 h, the RRR method performed better than PM, except for
April 2022. Using HRT = 24 h, the RRR method performed better than
PM in all the months of the interval analyzed. The best performance of
the RRR was for the rainy profile (HRT = 1–10 h) with an annual
average RMSE of 9.9 %. As expected, the intermediate profile had a
higher average RMSE value, 25.0 %. In this profile, solar radiation is
intermittent due to a significant accumulation and passage of clouds. For
the sunny profile, the average RMSE was 15.7 %. Comparing RRR with
PM for all profiles (HRT = 1–10 h and HRT = 24 h), the RRR method
outperformed PM. Using a horizon of 1–10 h, the average monthly
RMSE for the RRR ranged from 7.3 % to 50.1 %. For the PM method, the
average monthly RMSE ranged from 15.1 % to 65.0 %. Therefore, with
HRT = 24 h, the average monthly RMSE for the RRR ranged from 4.5 %
to 43.2 %. For the PM method, the average monthly RMSE ranged from
11.5 % to 75.0 %. In the HRT= 1–10 h, the RRR outperformed the PM in
almost all the months in the interval analyzed. On the other hand, in
April 2022, the RRR showed higher RMSE, MAE, and MAPE than the
PM. Using HRT = 24 h, the RRR performed better in all months of the
interval. April 2022 was a very unstable, cloudy, and rainy month.

The RRR method proved to be easy to access and inexpensive to run.
Another advantage is that photovoltaic systems can be applied any-
where on the planet for any configuration, inclination, and orientation.
The RRR method does not require additional equipment, such as pyr-
anometers, reference cells, high-resolution digital cameras, etc. The RRR
is as low-cost as the PM method and performs better. Another advantage
is that if there is no generation data available at the forecasting site, we
can use generation data from photovoltaic systems located close to the
forecasting site. For better performance of the proposed method, more
accurate weather forecast meteorological data can be sought. The errors
presented by the proposed model are linked to the errors in the mete-
orological data. Another recommendation to improve the model’s per-
formance is to avoid creating the (PFP) pattern for sunny, intermediate,
and rainy profiles. Instead, we can create a PF for each type of weather
forecast provided by the weather platform and use it for forecasting. We
can also create the (PFP) for every 15 days instead of for the entire
month. In some months, the generation varies at the beginning and end
of the month.
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