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Abstract
This study aims to employ machine learning, specifically artificial neural networks (ANNs), to predict the flow curve of 
hot-deformed steel alloys. The method involved creating a dense ANN with two hidden layers, trained with data from 70 
steel classes, including information on chemical composition, temperature, and strain rate. The results indicate robustness 
and good generalization capability, with a mean absolute error of 11.4 MPa and a mean squared error of 10.3 MPa. The 
model demonstrates an R2 value of 0.98, highlighting its effectiveness in explaining variability in the data. The conclusions 
underscore the feasibility of ANNs in describing the mechanical behavior of steel alloys, providing an efficient and rapid 
tool for metal forming projects, with potential for future research and innovations in this field.
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1 Introduction

The development of successful metal forming technologies 
requires reliable information about the material's mechani-
cal behavior during plastic deformation. The flow curve is 
crucial information in the design of mechanical forming pro-
cesses, outlining the relationship between the flow stress ( kf  ) 
and true strain ( � ) [1]. This curve plays a fundamental role 
in quantifying the main variables of forming processes [2].

The plastic deformation of a metal can be envisioned as a 
large number of irreversible microscopic processes. The flow 
curve is the macroscopic representation of the microscopic 
effects described during metal forming. The flow stress ( kf  ) 
can be defined as the stress value acting on a metal capable 
of inducing flow or plastic deformation. This stress value is 
influenced by various factors associated with the deforma-
tion process, such as strain ( � ), strain rate ( �̇� ), and tempera-
ture ( � ), as well as material-related factors such as chemical 
composition, microstructure, segregation, and deformation 
history [3]. Thus, the flow stress can be expressed as follows:

The knowledge of the relationship presented in Eq. (1) 
is a basic prerequisite for the application of analytical and 
numerical calculation methods in forming technology [3]. 
Currently, the flow curve is an essential input parameter in 
finite element software, being indispensable for obtaining 
accurate solutions.

In cold work, the flow stress depends fundamentally on 
the material characteristics and the imposed degree of strain. 
In this condition, the material’s mechanical behavior is gov-
erned by work hardening or the increase in material strength 
due to plastic deformation. In hot work, in addition to work 
hardening, various simultaneous microstructural changes 
occur, such as dynamic recovery and recrystallization [4]. 
In this condition, the flow stress becomes highly sensitive 
to temperature and strain rate. These parameters influ-
ence the recovery mechanisms that occur in the material. 
The increase in temperature favors the migration of linear 
defects. Consequently, the material’s flow stress decreases 
with the temperature increase. The concomitant change in 
the arrangement of dislocations leads to material softening. 
However, this process requires time, which is reduced as the 
strain rate increases. This means that as �̇� increases, there is 
progressively less time available for recovery and recrystal-
lization processes. Therefore, the flow stress increases with 
the material’s velocity during hot forming [3].

(1)kf = f (𝜑, �̇�, 𝜗,material)
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Flow curves are commonly determined experimentally 
on a laboratory scale. Compression, tension, or torsion 
tests are standardized and widely used for this purpose 
[5–7]. In these tests, the relationship between flow stress 
and true strain can be determined from experimental force 
data and the change in the sample’s cross-sectional area. 
The experimental procedure is relatively simple when the 
material is deformed at room temperature. However, the 
analysis of hot forming processes requires more complex 
and expensive procedures. In this condition, it is essential 
to know how the material responds to deformation at the 
temperatures and deformation velocities imposed by the 
specific forming operation. This requires a series of tests. 
Additionally, the flow curve must be determined from tests 
conducted at constant strain rate, under well-controlled 
temperature conditions, with continuous measurement 
of stress, strain, and temperature during deformation [6]. 
These procedures require a substantial amount of time, 
highly trained personnel, and expensive equipment. These 
aspects limit the accessibility of this technology to only a 
few companies.

An alternative approach is found in literature research 
and databases. However, the available information is lim-
ited to traditional materials conventionally used in metal 
forming processes. The current trend of companies using 
modern materials recently developed by the steel indus-
try generates the need for characterization of these new 
materials.

Currently, a frequently used approach in the literature 
[8–15] to determine flow curves is inverse modeling. This 
iterative approach is based on simulation models that mini-
mize the deviation between simulated and experimentally 
measured forces [8]. This methodology reduces experimen-
tal effort but requires high knowledge in numerical mod-
eling, which can be a barrier to industrial application.

It is essential to explore alternatives that enable the char-
acterization of the mechanical behavior of materials in a fast, 
simple, and cost-effective manner. In this context, artificial 
intelligence emerges as a promising approach, garnering 
increasing interest for its innovative capabilities.

To broaden access to the mechanical behavior of materi-
als in an agile and reliable manner, this study proposes the 
application of machine learning to predict the flow curve of 
steel alloys. The methodology uses flow curves and chemical 
compositions of a wide variety of steels to train an artificial 
neural network (ANN) model and define an optimized data 
architecture. The central objective is to evaluate the effec-
tiveness of ANNs in predicting the mechanical behavior of 
steels during hot plastic deformation. This approach repre-
sents an innovative and highly promising initiative to assist 
in metal forming projects. To provide a better understand-
ing of the proposal, a brief introduction to the principles of 
artificial neural networks is presented below.

2  Artificial neural networks

Machine learning can be conceptualized in three fundamen-
tal elements: performance, task, and experience. In this con-
text, a computer program learns from experience regarding a 
specific class of tasks. The essence of this learning lies in the 
continuous improvement of the program’s performance in 
assigned tasks as it accumulates experience over time [16]. 
These machine learning systems can be succinctly repre-
sented by the following equation [17]:

The “Objective” represents the problem to be addressed, 
often expressed as an objective function. The “Sample” is 
a subset of the population selected for study, often obtained 
through data preprocessing. This includes data cleaning, 
where incomplete, incorrect, inaccurate, or irrelevant parts 
are identified and addressed [18]. Feature engineering is also 
part of this process, involving the extraction, selection, con-
struction, and learning of features to optimize the application 
of machine learning algorithms. The “Algorithm” compo-
nent covers the machine learning algorithm and the model 
optimization algorithm. Among the most common machine 
learning algorithms are support vector machine (SVM), 
decision tree (DT), and artificial neural network (ANN). 
The “Model” is the resulting mathematical description of 
the process, reflecting the learned algorithm based on the 
Sample [17].

In this study, artificial neural networks (ANN) were cho-
sen over other techniques due to the specific objective and 
the complex nature of the data involved. ANN is particularly 
suited for problems that involve complex, nonlinear rela-
tionships between variables, as is the case with predicting 
the mechanical behavior of materials under different ther-
momechanical conditions, where multiple factors, such as 
chemical composition, temperature, and strain rate, interact 
in a highly intricate manner.

An artificial neural network (ANN) is a versatile model 
for nonlinear statistical analysis, capable of performing both 
data classification and regression calculation tasks. This 
approach establishes a connection between input and out-
put data through a set of nonlinear functions, allowing the 
representation of complex relationships and patterns in data-
sets. This flexibility makes ANNs valuable tools in a vari-
ety of applications, from pattern recognition to numerical 
predictions, providing a powerful capacity for learning and 
adaptation to diverse data [19]. In recent decades, this tech-
nology has found application in manufacturing processes 
for various purposes. In metal forming, the use of ANNs 
began in the late 1990s [20]. The technique has been used to 
predict forces [21], design tools [22], minimize springback 
[23–26], estimate processing costs [27, 28], identify material 

(2)Objective + Sample + Algorithm = Model
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properties [29, 30], predict defects [31–34], define param-
eters [35–38], and optimize maintenance [39].

ANNs seek to emulate the functioning of the human 
brain, drawing inspiration from how neurons communi-
cate. Artificial neural networks are composed of nodes, also 
known as artificial neurons, organized in interconnected 
layers, as illustrated in Fig. 1. The first layer receives and 
summarizes input information, the last provides target val-
ues, and intermediate layers are referred to as hidden layers. 
Each node in a hidden layer is characterized by the following 
mathematical expression [37]:

where zi is the output of the node in layer i , zj is the output 
of the node in the previous layer j , wij is the weight associ-
ated with zj , di is a bias term, and ∅ is a non-linear activation 
function.

Once an input layer is established, weights are assigned 
to assist in defining the importance of each provided vari-
able. Larger weights have a more significant impact on the 
output compared to other inputs. Each input is multiplied by 
its respective weight, and the results are summed. Then, the 
output goes through an activation function, thus determin-
ing the result. If this output surpasses a certain threshold, 
the node is “activated,” transmitting data to the next layer 
in the network. This process, where the output of one node 
becomes the input for the next, characterizes the neural net-
work as a feedforward network [38, 40].

In the context of regression problems, nodes in the output 
layer follow a similar formulation but without the applica-
tion of an activation function. The learning process of a neu-
ral network is termed training, mathematically grounded in 
the concept of gradient descent, which seeks to minimize the 
associated error function [41]. The process involves itera-
tively adjusting the weights to improve the model fit. This is 
achieved through backpropagation of errors, where weights 

(3)zi = ∅

(∑

j
wijzj + di

)

are adjusted to minimize the discrepancy between the mod-
el’s predictions and the actual values. This iterative process 
aims to achieve a minimal estimate of prediction error.

3  Materials and methods

This study aims to develop an artificial neural network capa-
ble of making reliable predictions of the flow curve of steel 
alloys. Figure 2 schematically illustrates the methodology 
employed. The work is carried out in two main phases, con-
sisting of the dataset creation phase and the prediction and 
analysis phase, respectively. This working scheme has been 
successfully applied by other researchers in using AI to pre-
dict material properties [42, 43].

3.1  Database

The input dataset used in this study was obtained from the 
material library of the Qform UK finite element software. 
The database provides information on a wide range of mate-
rials commonly used in metal forming processes, including 
various steel alloys. The flow curve for each material can be 
accessed at different strain rates and temperatures. Addition-
ally, the chemical compositions of the materials are avail-
able. All this information can be downloaded as an Excel 
document. Since it is not possible to retrieve information 
for multiple materials simultaneously, it was necessary to 
download data for each material individually.

Raw data for 70 steels were obtained. The set encom-
passes the main steel classes used in hot forming: carbon 
steels, C-Cr, Cr-V, Cr–Mo, structural steels, Mn steels, 
Mn-Cr, Mo-Cr, Ni–Cr, and stainless steels. For each alloy, 
flow curves were recorded at five different temperatures and 
six deformation rates. That is, for each material, a set of 
30 flow curves was obtained, covering deformation rates 
ranging from 0.01 to 500 s⁻1 and temperatures from 700 to 

Fig. 1  Example of artificial neu-
ral network architecture
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1250 °C. Each curve included between 8 and 10 points rep-
resenting different relationships between kf  and � . The fixed 
strain values ranged from 0.02 to 1.5. The chemical compo-
sition was defined by recording carbon and 14 other chemi-
cal elements: C, Si, Mn, P, S, Al, Cr, Ni, Mo, Ti, V, Be, N, 
and Cu. Once the data for all materials were downloaded, 
the information contained in all these files was sequentially 
read and interpreted.

This dataset was carefully selected so that the ANN could 
capture and understand the mutual interactions between the 
chemical elements and their influence on flow stress, consid-
ering the synergistic effects under various thermomechanical 
conditions. Thus, the model is capable of accurately reflect-
ing phase changes and recrystallization phenomena in its 
predictions, which play a crucial role in the mechanical 
behavior of steels at high temperatures.

3.2  Data preprocessing

In-depth understanding and careful preprocessing of data, 
including the application of appropriate normalization 
techniques, are crucial steps in the effective conduct of data 
mining [44]. Input data often have multiple dimensions, 
and each variable has distinct interval scales. Therefore, it 
becomes essential to normalize each variable to a standard-
ized range from 0 to 1 [45].

To ensure that all features contribute equally to the net-
work training, regardless of their original scales, data nor-
malization was performed. The process involves adjusting 
the values of input variables to a standardized scale. The 
Z-score normalization technique was used. This technique 
uses Eq. (4) to generate a distribution with a mean of zero 
and a standard deviation of one:

where x corresponds to the training sample value, u is the 
mean, and s is the standard deviation of the training samples.

3.3  ANN design

The next step involves selecting the architecture of the arti-
ficial neural network (ANN). This task plays a crucial role 
in the performance and generalization ability of the model 
and is inherently linked to the characteristics of the training 
data. After defining the architecture, the model development 
process takes place, where different topologies are tested 
and adjusted.

Once the data has been filtered and transformed into 
a CSV file, it was imported into Google Colab. This tool 
allows for quick tests and implementations of libraries that 
minimize the work of the solution developer in defining the 
artificial neural network project.

To enhance the performance of the artificial intelligence 
model, it is necessary to find the optimal combination of 
parameters that best fits the data and the problem at hand. In 
this process, an iterative approach involving trial and error 
is adopted. Initially, the training set was divided into two 
parts (Fig. 3): a temporary training set containing 80% of the 
data and a validation set encompassing the remaining 20%. 
This division was done randomly and repeated. For each 
model trained with the temporary training set, predictions 
were made on the validation set, followed by evaluations of 
predictive performance [37].

This is a widely adopted practice in machine learning. 
The model is trained with 80% of the data, while its per-
formance is evaluated on the remaining 20%, reserved for 

(4)z =
x − u

s

Fig. 2  Applied methodology
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testing. It is crucial to emphasize that, to avoid any bias, 
the same data is not used for both training and predictions. 
This approach aims to prevent overfitting, a phenomenon 
in which the model becomes overly tailored to the training 
data, compromising its ability to generalize to new data. By 
adopting this strategy, the goal is to ensure the acquisition of 
accurate and meaningful metrics to assess the model’s effec-
tiveness and its generalization capability in scenarios not 
covered during training [46]. The difference between train-
ing and testing errors, especially in the initial iterations, is 
an expected occurrence that decreases as the model adjusts 
and improves its performance. This data division plays a 
crucial role in ensuring that the ANN can accurately pre-
dict the behavior of new steel alloys, reliably replicating the 
technological parameters and thermomechanical conditions 
involved in industrial processes. Sixteen input variables were 
selected (Table 1) for the model, including the chemical ele-
ments that make up the composition of the steel alloys, val-
ues of true strain ( � ), strain rate ( �̇� ), and temperature ( � ). 

Other material-related features were not considered in this 
study due to the absence of data or lower correlation with 
the yield stress. The value of kf  was chosen as the output. 
Thus, the model development process was responsible for 
defining the ideal number of hidden layers and the optimal 
number of neurons in each hidden layer.

A maximum limit of 5000 training iterations was estab-
lished to prevent potential infinite loops. This approach aims 
to ensure computational efficiency and avoid overfitting the 
model to the training data.

3.4  ANN performance assessment

After completing all training and prediction iterations, the 
subsequent phase involves a comprehensive analysis. An 
extensive battery of statistical metrics is computed, and 
various graphs are generated to summarize the training and 
prediction steps, providing a solid foundation for discussing 
the results [47].

The evaluation of the model’s performance was based on 
three metrics. The first one is the mean squared error (MSE) 
defined by the following:

where j is the number of sets that include input and out-
put data and yi and y∗

i
 are, respectively, the measured and 

predicted response values for the output variables. MSE is 
a common metric in regression problems. It measures the 
average of the squares of the differences between the model 

(5)MSE =

√

1

j

∑j

i=1

(
yi − y∗

i

yi

)2

Fig. 3  Distribution between 
training and testing data

Table 1  Input variables used in this research

Feature Variable Range Feature Variable Range

1 C 0,03–1,15 9 Mo 0,0–3,5
2 Si 0,05–3,3 10 Ti 0,0–2,0
3 Mn 0,1–10,0 11 V 0,0–1,15
4 P 0,01–0,11 12 Be 0,0–0,5
5 S 0,008–0,33 13 N 0,0–0,55
6 Al 0,0–1,2 14 �̇� 0,01–1000
7 Cr 0,0–23,0 15 � 0,002–1,6
8 Ni 0,0–37,0 16 � 675–1250



5486 The International Journal of Advanced Manufacturing Technology (2024) 134:5481–5492

predictions and the actual values. The lower the MSE, the 
better the model’s performance.

The second metric is the mean absolute error (MAE), 
which is given by the following:

The R2 value was also calculated, given by the following:

where y corresponds to the mean of the measured response 
values of the output variables. R2 is a regression metric that 
measures the proportion of variability in the data explained 
by the model. A higher R2 indicates a better fit of the model 
to the data and a higher likelihood of the model making good 
predictions for unseen data [37].

4  Results and discussion

4.1  Artificial neural network (ANN) design

The architecture of the ANN is directly dependent on the 
characteristics of the training data. To explore the nature of 
the database, graphs were plotted that relate the flow stress 
to the alloying element content. Figure 4 illustrates this rela-
tionship for the elements C, Si, Mn, Cr, Mo, and Ni. The 
recorded kf  values correspond to the flow stress required to 
generate a deformation � = 1.5 at a strain rate of �̇� = 1s−1 
and a temperature � = 1000◦C.

It can be observed that the data exhibit intricate and 
nonlinear relationships. For instance, when analyzing the 
graph related to carbon content, the expectation would be a 
continuous increase in flow stress with the increase in %C. 
However, Fig. 4 reveals that the kf  values do not follow a 
linear relationship with carbon content. This observation 
holds true for the other elements as well. From a metallur-
gical perspective, this highlights the complexity involved in 
hot work, making it challenging to quantify the individual 
effect of each alloying element on the mechanical strength 
of steels. In contrast to cold work, where strain is primarily 
associated with material work hardening, hot work encom-
passes a series of metallurgical phenomena. In this context, 
the flow stress value not only reflects the impact of a specific 
element on the magnitude of recovery and dynamic recrys-
tallization but also influences the kinetics of these phenom-
ena. This added complexity makes the analysis considerably 
more challenging.

In the perspective of data analysis, it becomes evident 
that the selected data architecture for the artificial neural 

(6)MAE =
1

j

∑j

i=1

|
|
|
yj − y∗

i

|
|
|

(7)R2 = 1 −

∑j

i=1

�
yj − y∗

i

�2

∑j

i=1

�
yj − y

�2

network (ANN) model must be capable of handling data 
with complex relationships. The characteristics of the data 
play a crucial role in defining the architecture of the arti-
ficial neural network (ANN) to be employed. Given the 
evident complexity in the relationships between variables, 
it is essential to choose an architecture that can capture 
and learn these nuances. To meet the objectives of this 
work, which aims to predict the yield curve of steel alloys 
effectively and accurately, an architecture of a dense neu-
ral network (DNN) was modeled [48]. This class of net-
works has the capacity to learn more abstract hierarchical 
representations, suitable for complex data with non-linear 
relationships and intricate patterns.

By selecting this architecture, the goal is to strengthen 
the propagation of resources and maximize the recogni-
tion of network connections between nodes. In a DNN, 
each neuron receives a weighted sum of the outputs of the 
neurons connected to them, making quicker calculations 
to learn estimates about the training sets [49].

The model was adapted with an input layer, two hid-
den layers, and an output layer, as shown in Fig. 5. The 
input layer has 14 neurons that include the chemical ele-
ments composing the steel alloys, true strain ( � ), strain 
rate ( �̇� ), and temperature ( � ). The hidden layers consist 
of 20 neurons each, and the output layer has one neuron. 
The output of the neural network corresponds to the yield 
stress value ( kf  ) obtained when the material, defined by a 
specific chemical composition, is subjected to a specific 
value of � , at a specific �̇� and � . In total, the network has 
801 parameters to be trained.

The hidden layers enable the network to learn more 
abstract and complex data representations, which is crucial 
when the relationships between variables are not simply 
linear. The ability of DNNs to act as universal approxima-
tors, combined with the flexibility provided by the hid-
den layers, facilitates modeling more complex and non-
linear relationships present in the data [50]. This topology 
resulted from a series of optimization steps aimed at bal-
ancing learning capacity with the resources needed for 
training [51].

In this context, it is worth highlighting that the com-
plexity of the topology plays a crucial role. More com-
plex topologies have the ability to learn more intricate 
functions compared to simpler topologies but require 
additional resources during training, such as additional 
time, computational power, and more extensive volumes of 
input data [43]. Throughout the process, a careful balance 
was achieved between the depth and width of the network, 
aiming to optimize performance without excessively com-
promising the required resources. This approach aims to 
maximize the efficiency of the model, providing robust 
and effective learning.
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4.2  Performance evaluation

Figures 6 and 7 present, respectively, the evolution of mean 
squared error (MSE) and mean absolute error (MAE) as a 
function of the number of iterations during model training. 
These graphs are valuable tools to understand the perfor-
mance and convergence of the model over time. They pro-
vide insights into how the training algorithm is adjusting the 
network weights to minimize errors.

Initially, both MAE and MSE decrease as the model 
adjusts to the training data. This reflects the learning process 
of the network to reduce discrepancies between predictions 

and actual values. As training progresses, convergence of 
errors to relatively low values is observed, indicating that the 
artificial neural network (ANN) is learning effectively and 
approaching an optimal solution. Subsequently, the graphs 
show stability with minimal variations in error values, indi-
cating that the model has reached a point where additional 
adjustments do not provide significant improvements.

Both graphs demonstrate that the training algorithm is 
consistently working to minimize errors. In other words, the 
error curve continues to move towards zero, indicating an 
active search for a solution that closely approximates the 
training data.

Fig. 4  Relationship between flow stress and the content of elements C, Si, Mn, Cr, Mo, and Ni. The recorded kf  values correspond to the yield 
strength required to generate a strain � = 1.5 at a strain rate of �̇� = 1s−1 and a temperature � = 1000◦C
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After 5000 iterations, the mean absolute error is 
11.4 MPa, while the mean squared error is 10.3 MPa. MAE 
represents the average of the absolute differences between 
actual and predicted values. Therefore, an MAE of 11.4 MPa 
indicates that, on average, predictions of yield strength devi-
ate by 11.4 MPa from actual values. MSE represents the 
average of the squared differences between actual and pre-
dicted values. An MSE of 10.3 MPa indicates that, on aver-
age, the mean squared deviations of predictions from actual 
values are 10.3 MPa.

The interpretation of results regarding MAE and MSE 
depends on the specific application domain and the char-
acteristics of the output variable. It is always useful to 

compare these metrics with other approaches to assess 
whether the model meets the required accuracy for the 
particular application. In the experimental construction of 
the flow curve of a material, deviations in flow stress val-
ues are common. The dispersion of mechanical properties 
is often observed in samples cut from the same bar. This 
phenomenon has been documented in the literature and 
industrial applications and is likely caused by the lack of 
homogeneity characteristic of metallic materials [52, 53].

Additionally, industrial mechanical forming processes 
induce severe strain in metals. Therefore, the flow stress 
typically varies on a scale of hundreds of MPa. Accord-
ing to ALTAN (2005), the closed-die forging process 
of steel alloys, for example, typically involves stresses 

Fig. 5  Architecture of the 
proposed dense artificial neural 
network

Fig. 6  Evolution of the mean absolute error as a function of the num-
ber of iterations for model training

Fig. 7  Evolution of the mean squared error as a function of the num-
ber of iterations for model training
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between 415 and 690 MPa [1]. In this scenario, an MAE 
of 11.4 MPa can be considered acceptable, indicating that 
the predictions, on average, deviate by about 2% of the 
total scale.

Figure 8 presents the model prediction graph. This graph 
is a powerful tool for intuitively and visually assessing the 
quality of predictions made by an ANN. If the points on 
the graph are approximately aligned along a straight line, it 
suggests that the model is effectively capturing linear rela-
tionships in the data. A linear distribution indicates a good 
match between predictions and actual values.

From the graph, the value of R2 can be extracted. This 
performance metric shows the proportion of data variabil-
ity explained by the model. The proposed model has an R2 
value of 0.98. A coefficient of determination of 0.98 indi-
cates that the ANN model is highly effective in explaining 
data variability. In this case, the value of 0.98 suggests that 
approximately 98% of the variability in the model output 
is explained by the provided inputs. In simple terms, this 
means that the model has an excellent ability to fit the train-
ing data and capture underlying patterns.

It can be observed that the points on the graph in Fig. 8 
are close to the diagonal line, and there are no discernible 
deviation patterns. Moreover, no significantly scattered 
points are identified far from the diagonal line (outliers). 
Based on these results, it is expected that the model predic-
tions are very close to the actual values.

Although the obtained results have been promising, it is 
crucial to highlight that the limited size of the input dataset 
used in this study represents a constraint on the learning 
capacity of the neural network [41, 47]. Another critical 
aspect for the predictive ability of the model is associated 

with the presence of input data with zero values. During 
training, the weights of the neural network are adjusted 
to minimize error. If a specific input has a zero value, the 
weights corresponding to that input may not be updated 
effectively, as multiplication by zero does not contribute to 
weight updates. Furthermore, if the relationship between the 
zero-value input and the network output is nonlinear, the 
network’s inability to adjust the corresponding weights may 
result in an inadequate representation of this relationship.

Figure 9 visually represents the difference between pre-
dicted and actual values for different data points. The graph 
indicates that the model’s predictions are very close or 
nearly identical to the actual values. Effective convergence 
shows that the model is adjusting its parameters to minimize 
discrepancies for all levels of flow stress.

4.3  Inference tests

After creating the model, inference tests were conducted to 
further evaluate the predictive capability of the model. Infer-
ence tests refer to the ability to make predictions on unseen 
data based on the trained model. This inference phase is 
crucial to understand how the model performs in real-world 
situations and how its predictions can be applied. The tests 
include applying the model to new datasets that were not 
used during training, allowing an assessment of the model’s 
generalization capability.

The ability of a model to correctly predict new examples 
different from those used for training is known as gener-
alization [54]. This property of the model depends on the 
quality of the data, the size of the database, and the training 

Fig. 8  Prediction of flow stress 
as a function of its original 
value
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algorithm [11]. Improving this competence, minimizing the 
model’s error, is the universal goal of machine learning [16].

For the tests, three steel alloys that were not included in 
the neural network’s database were selected. These alloys 
are vanadium microalloyed steel DIN 38MnVS6 and the 
chromium-molybdenum steels DIN 9CrMo4-5 and DIN 
22CrMo4-4. Table 2 shows the chemical composition of 
the steels used in the inference tests.

Figure 10 displays the actual and predicted flow curves 
by the model developed in this study for the steels DIN 
38MnVS6, DIN 9CrMo4-5, and DIN 22CrMo4-4. It can 
be observed that the predicted curves align well with the 
real curves. The neural network demonstrated the ability to 
satisfactorily predict the actual behavior of the materials.

The discrepancy between the real and predicted curves 
can be quantified by calculating the area bounded by both 
curves [42, 55, 56]. The area between the two curves corre-
sponds to 2.0%, 4.5%, and 3.7% of the area of the real curve 
for DIN 22CrMo4-4, DIN 9CrMo4-5, and DIN 38MnVS6, 
respectively. This deviation can be used as an indicator of 
the error incurred when using the approximation instead of 
the real curve [42].

The model’s responses to different conditions and scenar-
ios demonstrate its robustness and practical utility in vari-
ous real-world situations. Moreover, an error of less than 

5%, as achieved in the inference tests, implies performance 
comparable to other artificial intelligence models applied in 
materials science [42, 57, 58].

5  Conclusions

This study investigated the applicability of artificial neu-
ral networks (ANNs) in predicting the flow curve of hot-
deformed steel alloys. The results indicate significant 
advancements. It was demonstrated that ANNs are effective 
in predicting the mechanical behavior of these alloys, con-
sidering factors such as chemical composition and form-
ing conditions ( 𝜑, �̇�, 𝜗 ). A dense neural network, with two 
hidden layers containing 20 neurons each, proved capable 
of learning complex relationships, resulting in robust per-
formance, as evidenced by a mean absolute error (MAE) of 
11.4 MPa and a mean squared error (MSE) of 10.3 MPa. 
The MAE and MSE values are considered acceptable, given 
that in industrial mechanical forming processes, the yield 
strength typically varies on the scale of hundreds of MPa.

The model demonstrated excellent predictive capacity, 
indicated by R2 = 0.98 and validated by inference tests 
involving steel alloys not present in the training data. 
Consistent responses in different conditions and scenarios 

Fig. 9  Convergence of training 
data with real data

Table 2  Chemical composition 
of DIN 38MnVS6, DIN 
9CrMo4-5, and DIN 
22CrMo4-4 steels

Steel C Si Mn P S Al Cr Ni Mo Ti V Cu

9CrMo4-5 0,9 0,15 0,7 0,01 0,01 - 1,15 - 0,5 - - 0,1
22CrMo4-4 0,26 0,4 0,8 0,035 0,035 - 1,2 0,6 0,5 - - -
38MnVS6 0,4 0,6 1,45 0,015 0,03 0,017 0,19 - - 0,01 0,11 -
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highlighted the robustness and practical utility of the pro-
posed model.

This work contributes to the development of mechanical 
forming processes, providing an effective tool based on 
artificial intelligence. Furthermore, it opens possibilities 
for similar research in other metals. The ANN proved suit-
able for describing the plastic behavior of industrial mate-
rials without the need for costly tests. Moreover, expand-
ing the database and exploring more advanced network 
architectures offer potential for future improvements.
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